Spaces:
Sleeping
Sleeping
File size: 14,947 Bytes
0f34fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
import torch.nn as nn
from models.ACMDM import ACMDM
from models.ACMDM import TimestepEmbedder, ACMDMTransBlock, LlamaRMSNorm
from models.ROPE import RopeND
from utils.eval_utils import eval_decorator
from utils.train_utils import lengths_to_mask
#################################################################################
# ACMDM+ControlNet #
#################################################################################
class ACMDM_ControlNet(ACMDM):
def __init__(self, input_dim, cond_mode, base_checkpoint, latent_dim=256, ff_size=1024, num_layers=8,
num_heads=4, dropout=0.2, clip_dim=512,
diff_model='Flow', cond_drop_prob=0.1, max_length=49,
patch_size=(1, 22), stride_size=(1, 22),
clip_version='ViT-B/32', freeze_base=True, need_base=True, **kargs):
# --------------------------------------------------------------------------
# ACMDM
super().__init__(input_dim, cond_mode, latent_dim=latent_dim, ff_size=ff_size, num_layers=num_layers,
num_heads=num_heads, dropout=dropout, clip_dim=clip_dim,
diff_model=diff_model, cond_drop_prob=cond_drop_prob, max_length=max_length,
patch_size=patch_size, stride_size=stride_size,
clip_version=clip_version, **kargs)
# --------------------------------------------------------------------------
# ControlNet
self.c_t_embedder = TimestepEmbedder(self.latent_dim)
self.c_control_embedder = c_control_embedder(3, self.latent_dim, patch_size=self.patch_size,
stride_size=self.stride_size)
self.c_x_embedder = nn.Conv2d(self.input_dim, self.latent_dim, kernel_size=self.patch_size,
stride=self.stride_size, bias=True)
self.c_y_embedder = nn.Linear(self.clip_dim, self.latent_dim)
self.c_rope = RopeND(nd=1, nd_split=[1], max_lens=self.max_lens)
self.ControlNet = nn.ModuleList([
ACMDMTransBlock(self.latent_dim, num_heads, mlp_size=ff_size, rope=self.c_rope, qk_norm=True) for _ in
range(num_layers)
])
self.zero_Linear = nn.ModuleList([
nn.Linear(self.latent_dim, self.latent_dim) for _ in range(num_layers)
])
self.initialize_weights_control()
if need_base:
for key, value in list(base_checkpoint['ema_acmdm'].items()):
if key.startswith('ACMDMTransformer.'):
new_key = key.replace('ACMDMTransformer.', 'ControlNet.')
base_checkpoint['ema_acmdm'][new_key] = value.clone()
missing_keys, unexpected_keys = self.load_state_dict(base_checkpoint['ema_acmdm'], strict=False)
assert len(unexpected_keys) == 0
if self.cond_mode == 'text':
print('ReLoading CLIP...')
self.clip_version = clip_version
self.clip_model = self.load_and_freeze_clip(clip_version)
if freeze_base:
for param in self.t_embedder.parameters():
param.requires_grad = False
for param in self.x_embedder.parameters():
param.requires_grad = False
for param in self.y_embedder.parameters():
param.requires_grad = False
for param in self.final_layer.parameters():
param.requires_grad = False
for param in self.ACMDMTransformer.parameters():
param.requires_grad = False
def initialize_weights_control(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.ACMDMTransformer:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.c_t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.c_t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.ControlNet:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.c_control_embedder.zero_linear.weight, 0)
nn.init.constant_(self.c_control_embedder.zero_linear.bias, 0)
for block in self.zero_Linear:
nn.init.constant_(block.weight, 0)
nn.init.constant_(block.bias, 0)
def forward_with_control(self, x, t, conds, attention_mask, cfg1=1.0, cfg2=1.0, control=None, index=None,
force_mask=False):
if not (cfg1 == 1.0 and cfg2 == 1.0):
half = x[: len(x) // 3]
x = torch.cat([half, half, half], dim=0)
# controlnet
c_t = self.c_t_embedder(t, dtype=x.dtype)
conds = self.mask_cond(conds, force_mask=force_mask)
c_control = self.c_control_embedder(control * index)
if self.training and self.cond_drop_prob > 0.:
mask = torch.bernoulli(torch.ones(c_control.shape[0], device=c_control.device) * self.cond_drop_prob).view(c_control.shape[0], 1, 1)
c_control = c_control * (1. - mask)
if not (cfg1 == 1.0 and cfg2 == 1.0):
c_control = torch.cat([c_control, c_control, torch.zeros_like(c_control)], dim=0)
c_x = self.c_x_embedder(x).flatten(2).transpose(1, 2)
c_y = self.c_y_embedder(conds)
c_y = c_t.unsqueeze(1) + c_y.unsqueeze(1)
c_x = c_x + c_control
c_position_ids = self.position_ids_precompute[:, :c_x.shape[1]]
c_out = []
for c_block, c_linear in zip(self.ControlNet, self.zero_Linear):
c_x = c_block(c_x, c_y, attention_mask, position_ids=c_position_ids)
c_out.append(c_linear(c_x))
# main branch
tt = self.t_embedder(t, dtype=x.dtype)
x = self.x_embedder(x)
x = x.flatten(2).transpose(1, 2)
conds = self.y_embedder(conds)
y = tt.unsqueeze(1) + conds.unsqueeze(1)
position_ids = self.position_ids_precompute[:, :x.shape[1]]
# merging
for block, c in zip(self.ACMDMTransformer, c_out):
x = block(x, y, attention_mask, position_ids=position_ids)
x = x + c
x = self.final_layer(x, y)
if not (cfg1 == 1.0 and cfg2 == 1.0):
cond_eps, uncond_eps1, uncond_eps2 = torch.split(x, len(x) // 3, dim=0)
half_eps = cond_eps + (cfg1-1) * (cond_eps - uncond_eps1) + (cfg2-1) * (cond_eps - uncond_eps2)
x = torch.cat([half_eps, half_eps, half_eps], dim=0)
return x
def forward_control_loss(self, latents, y, m_lens, original, index, ae, mean_std):
latents = latents.permute(0, 2, 3, 1)
b, l, j, d = latents.shape
device = latents.device
non_pad_mask = lengths_to_mask(m_lens, l)
latents = torch.where(non_pad_mask.unsqueeze(-1).unsqueeze(-1), latents, torch.zeros_like(latents))
target = latents.clone().permute(0, 3, 1, 2).detach()
original = original.clone().detach()
force_mask = False
if self.cond_mode == 'text':
with torch.no_grad():
cond_vector = self.encode_text(y)
elif self.cond_mode == 'action':
cond_vector = self.enc_action(y).to(device).float()
elif self.cond_mode == 'uncond':
cond_vector = torch.zeros(b, self.latent_dim).float().to(device)
force_mask = True
else:
raise NotImplementedError("Unsupported condition mode!!!")
attention_mask = non_pad_mask.unsqueeze(-1).repeat(1, 1, self.patches_per_frame).flatten(1).unsqueeze(1).unsqueeze(1)
random_indices = torch.randint(0, len(index), (b,)).to(device)
indexx = torch.tensor(index, device=device)[random_indices]
mask_seq = torch.zeros((b, 3, l*4, j), device=device)
for i in range(b):
seq_num = torch.randint(1, m_lens[i]*4, (1,))
choose_seq = torch.sort(torch.randperm(m_lens[i]*4)[:seq_num.item()]).values
mask_seq[i, :, choose_seq, indexx[i]] = 1.0
model_kwargs = dict(conds=cond_vector, attention_mask=attention_mask, control=original, index=mask_seq,
force_mask=force_mask, mean_std=mean_std)
if self.diff_model == "Flow":
loss_dict = self.train_diffusion.training_losses(self.forward_with_control, target, ae=ae,
model_kwargs=model_kwargs)
else:
t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device)
loss_dict = self.train_diffusion.training_losses(self.forward_with_control, target, t, model_kwargs)
loss = loss_dict["loss"]
loss = (loss * non_pad_mask).sum() / non_pad_mask.sum()
return loss, loss_dict["loss_control"]
@torch.no_grad()
@eval_decorator
def generate_control(self,
conds,
m_lens,
control,
index,
density,
cond_scale,
temperature=1,
j=22
):
device = next(self.parameters()).device
l = control.shape[2]//4
b = len(m_lens)
if self.cond_mode == 'text':
with torch.no_grad():
cond_vector = self.encode_text(conds)
elif self.cond_mode == 'action':
cond_vector = self.enc_action(conds).to(device)
elif self.cond_mode == 'uncond':
cond_vector = torch.zeros(b, self.latent_dim).float().to(device)
else:
raise NotImplementedError("Unsupported condition mode!!!")
padding_mask = ~lengths_to_mask(m_lens, l)
noise = torch.randn(b, self.input_dim, l, j).to(device)
control = control.clone()
cfg1 = cond_scale[0]
cfg2 = cond_scale[1]
if not (cfg1 == 1.0 and cfg2 == 1.0):
# (1) with text and with control (2) no text and with control (3) with text and no control
cond_vector = torch.cat([cond_vector, torch.zeros_like(cond_vector), cond_vector], dim=0)
random_indices = torch.tensor(0, device=device).repeat(b) # no random in inference
indexx = torch.tensor(index, device=device)[random_indices]
mask_seq = torch.zeros((b, 3, l * 4, j), device=device)
for i in range(b):
if density in [1, 2, 5]:
seq_num = density
else:
seq_num = int(m_lens[i] *4* density / 100)
choose_seq = torch.sort(torch.randperm(m_lens[i] * 4)[:seq_num]).values
mask_seq[i, :, choose_seq, indexx[i]] = 1.0
attention_mask = (~padding_mask).unsqueeze(-1).repeat(1, 1, self.patches_per_frame).flatten(1).unsqueeze(1).unsqueeze(1)
model_kwargs = dict(conds=cond_vector, attention_mask=attention_mask, cfg1=cfg1, cfg2=cfg2, index=mask_seq,
control=control)
sample_fn = self.forward_with_control
if not (cfg1 == 1.0 and cfg2 == 1.0):
model_kwargs["attention_mask"] = attention_mask.repeat(3, 1, 1, 1)
noise = torch.cat([noise, noise, noise], dim=0)
if self.diff_model == "Flow":
model_fn = self.gen_diffusion.sample_ode() # default to ode sampling
sampled_token_latent = model_fn(noise, sample_fn, **model_kwargs)[-1]
else:
sampled_token_latent = self.gen_diffusion.p_sample_loop(
sample_fn, noise.shape, noise, clip_denoised=False, model_kwargs=model_kwargs,
progress=False,
temperature=temperature
)
if not (cfg1 == 1.0 and cfg2 == 1.0):
sampled_token_latent, _, _ = sampled_token_latent.chunk(3, dim=0)
sampled_token_latent = sampled_token_latent.permute(0, 2, 3, 1)
latents = torch.where(padding_mask.unsqueeze(-1).unsqueeze(-1), torch.zeros_like(sampled_token_latent),
sampled_token_latent)
return latents.permute(0, 3, 1, 2), mask_seq
#################################################################################
# ACMDM Zoos #
#################################################################################
def acmdm_raw_flow_s_ps22_control(**kwargs):
layer = 8
return ACMDM_ControlNet(latent_dim=layer*64, ff_size=layer*64*4, num_layers=layer, num_heads=layer, dropout=0, clip_dim=512,
diff_model="Flow", cond_drop_prob=0.1, max_length=49,
patch_size=(1, 22), stride_size=(1, 22), freeze_base=True, **kwargs)
ACMDM_ControlNet_Models = {
'ACMDM-Flow-S-PatchSize22-ControlNet': acmdm_raw_flow_s_ps22_control,
}
#################################################################################
# Inner Architectures #
#################################################################################
def modulate(x, shift, scale):
return x * (1 + scale) + shift
def zero_module(module):
for p in module.parameters():
p.detach().zero_()
return module
class c_control_embedder(nn.Module):
def __init__(
self,
in_features: int,
hidden_features,
patch_size,
stride_size,
) -> None:
super().__init__()
self.patch_embed = nn.Conv2d(in_features, hidden_features, kernel_size=(4,patch_size[1]), stride=(4,stride_size[1]), bias=True)
self.norm = LlamaRMSNorm(hidden_features, eps=1e-6)
self.zero_linear = nn.Linear(hidden_features, hidden_features)
def forward(self, x):
x = self.patch_embed(x).flatten(2).transpose(1, 2)
x = self.norm(x)
x = self.zero_linear(x)
return x |