Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import clip | |
| import math | |
| from functools import partial | |
| from timm.models.vision_transformer import Attention | |
| from models.ROPE import RopeND | |
| from utils.eval_utils import eval_decorator | |
| from utils.train_utils import lengths_to_mask | |
| from diffusions.diffusion import create_diffusion | |
| from diffusions.transport import create_transport, Sampler | |
| ################################################################################# | |
| # ACMDM # | |
| ################################################################################# | |
| class ACMDM(nn.Module): | |
| def __init__(self, input_dim, cond_mode, latent_dim=256, ff_size=1024, num_layers=8, | |
| num_heads=4, dropout=0, clip_dim=512, | |
| diff_model='Flow', cond_drop_prob=0.1, max_length=49, | |
| patch_size=(1, 22), stride_size=(1, 22), num_joint=22, | |
| clip_version='ViT-B/32', **kargs): | |
| super(ACMDM, self).__init__() | |
| self.input_dim = input_dim | |
| self.latent_dim = latent_dim | |
| self.clip_dim = clip_dim | |
| self.dropout = dropout | |
| self.cond_mode = cond_mode | |
| self.cond_drop_prob = cond_drop_prob | |
| if self.cond_mode == 'action': | |
| assert 'num_actions' in kargs | |
| self.num_actions = kargs.get('num_actions', 1) | |
| self.encode_action = partial(F.one_hot, num_classes=self.num_actions) | |
| # -------------------------------------------------------------------------- | |
| # Diffusion | |
| self.diff_model = diff_model | |
| if self.diff_model == 'Flow': | |
| self.train_diffusion = create_transport() # default to linear, velocity prediction | |
| self.gen_diffusion = Sampler(self.train_diffusion) | |
| else: | |
| self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear") | |
| self.gen_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear") | |
| # -------------------------------------------------------------------------- | |
| # ACMDM | |
| print('Loading ACMDM...') | |
| self.t_embedder = TimestepEmbedder(self.latent_dim) | |
| self.patch_size = patch_size | |
| self.stride_size = stride_size | |
| self.patches_per_frame = (num_joint - patch_size[1]) // stride_size[1] + 1 | |
| # Patchification | |
| self.x_embedder = nn.Conv2d(self.input_dim, self.latent_dim, kernel_size=self.patch_size, stride=self.stride_size, bias=True) | |
| # Positional Encoding | |
| max_length = max_length * self.patches_per_frame | |
| self.max_lens = [max_length] | |
| self.rope = RopeND(nd=1, nd_split=[1], max_lens=self.max_lens) | |
| self.position_ids_precompute = torch.arange(max_length).unsqueeze(0) | |
| self.ACMDMTransformer = nn.ModuleList([ | |
| ACMDMTransBlock(self.latent_dim, num_heads, mlp_size=ff_size, rope=self.rope, qk_norm=True) for _ in range(num_layers) | |
| ]) | |
| if self.cond_mode == 'text': | |
| self.y_embedder = nn.Linear(self.clip_dim, self.latent_dim) | |
| elif self.cond_mode == 'action': | |
| self.y_embedder = nn.Linear(self.num_actions, self.latent_dim) | |
| elif self.cond_mode == 'uncond': | |
| self.y_embedder = nn.Identity() | |
| else: | |
| raise KeyError("Unsupported condition mode!!!") | |
| self.final_layer = FinalLayer(self.latent_dim, self.input_dim, patch_size=patch_size, stride_size=stride_size, patches=self.patches_per_frame) | |
| self.initialize_weights() | |
| if self.cond_mode == 'text': | |
| print('Loading CLIP...') | |
| self.clip_version = clip_version | |
| self.clip_model = self.load_and_freeze_clip(clip_version) | |
| def initialize_weights(self): | |
| # Initialize transformer layers: | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
| # Zero-out adaLN modulation layers in ACMDM blocks: | |
| for block in self.ACMDMTransformer: | |
| nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
| nn.init.constant_(self.final_layer.linear.weight, 0) | |
| nn.init.constant_(self.final_layer.linear.bias, 0) | |
| def load_and_freeze_clip(self, clip_version): | |
| clip_model, clip_preprocess = clip.load(clip_version, device='cpu', jit=False) | |
| assert torch.cuda.is_available() | |
| clip.model.convert_weights(clip_model) | |
| clip_model.eval() | |
| for p in clip_model.parameters(): | |
| p.requires_grad = False | |
| return clip_model | |
| def encode_text(self, raw_text): | |
| device = next(self.parameters()).device | |
| text = clip.tokenize(raw_text, truncate=True).to(device) | |
| feat_clip_text = self.clip_model.encode_text(text).float() | |
| return feat_clip_text | |
| def mask_cond(self, cond, force_mask=False): | |
| bs, d = cond.shape | |
| if force_mask: | |
| return torch.zeros_like(cond) | |
| elif self.training and self.cond_drop_prob > 0.: | |
| mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_drop_prob).view(bs, 1) | |
| return cond * (1. - mask) | |
| else: | |
| return cond | |
| def forward(self, x, t, conds, attention_mask, context, force_mask=False): | |
| t = self.t_embedder(t, dtype=x.dtype) | |
| conds = self.mask_cond(conds, force_mask=force_mask) | |
| x = torch.cat([context, x], dim=2) | |
| x = self.x_embedder(x) | |
| x = x.flatten(2).transpose(1, 2) | |
| conds = self.y_embedder(conds) | |
| y = t.unsqueeze(1) + conds.unsqueeze(1) | |
| position_ids = self.position_ids_precompute[:, :x.shape[1]] | |
| for block in self.ACMDMTransformer: | |
| x = block(x, y, attention_mask, position_ids=position_ids) | |
| x = self.final_layer(x, y)[:, :, 5:, :] | |
| return x | |
| def forward_with_CFG(self, x, t, conds, attention_mask, context, cfg=1.0): | |
| if not cfg == 1.0: | |
| half = x[: len(x) // 2] | |
| x = torch.cat([half, half], dim=0) | |
| context = torch.cat([context, context], dim=0) | |
| x = self.forward(x, t, conds, attention_mask, context) | |
| if not cfg == 1.0: | |
| cond_eps, uncond_eps = torch.split(x, len(x) // 2, dim=0) | |
| half_eps = uncond_eps + cfg * (cond_eps - uncond_eps) | |
| x = torch.cat([half_eps, half_eps], dim=0) | |
| return x | |
| def forward_loss(self, latents, y, m_lens): | |
| latents = latents.permute(0, 2, 3, 1) | |
| b, l, j, d = latents.shape | |
| device = latents.device | |
| non_pad_mask = lengths_to_mask(m_lens, l) | |
| latents = torch.where(non_pad_mask.unsqueeze(-1).unsqueeze(-1), latents, torch.zeros_like(latents)) | |
| # prefix 20, prediction 40 style | |
| target = latents.clone().permute(0, 3, 1, 2).detach()[:, :, 5:, :] | |
| context = latents.clone().permute(0, 3, 1, 2).detach()[:, :, :5, :] | |
| force_mask = False | |
| if self.cond_mode == 'text': | |
| with torch.no_grad(): | |
| cond_vector = self.encode_text(y) | |
| elif self.cond_mode == 'action': | |
| cond_vector = self.enc_action(y).to(device).float() | |
| elif self.cond_mode == 'uncond': | |
| cond_vector = torch.zeros(b, self.latent_dim).float().to(device) | |
| force_mask = True | |
| else: | |
| raise NotImplementedError("Unsupported condition mode!!!") | |
| attention_mask = non_pad_mask.unsqueeze(-1).repeat(1, 1, self.patches_per_frame).flatten(1).unsqueeze( | |
| 1).unsqueeze(1) | |
| model_kwargs = dict(conds=cond_vector, force_mask=force_mask, attention_mask=attention_mask, context=context) | |
| if self.diff_model == "Flow": | |
| loss_dict = self.train_diffusion.training_losses(self.forward, target, model_kwargs) | |
| else: | |
| t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device) | |
| loss_dict = self.train_diffusion.training_losses(self.forward, target, t, model_kwargs) | |
| loss = loss_dict["loss"] | |
| non_pad_mask = non_pad_mask[:, 5:] | |
| loss = (loss * non_pad_mask).sum() / non_pad_mask.sum() | |
| return loss | |
| def generate(self, | |
| conds, | |
| m_lens, | |
| cond_scale: int, | |
| context, | |
| temperature=1, | |
| j=22, | |
| ): | |
| device = next(self.parameters()).device | |
| l = max(m_lens) | |
| b = len(m_lens) | |
| if self.cond_mode == 'text': | |
| with torch.no_grad(): | |
| cond_vector = self.encode_text(conds) | |
| elif self.cond_mode == 'action': | |
| cond_vector = self.enc_action(conds).to(device) | |
| elif self.cond_mode == 'uncond': | |
| cond_vector = torch.zeros(b, self.latent_dim).float().to(device) | |
| else: | |
| raise NotImplementedError("Unsupported condition mode!!!") | |
| padding_mask = ~lengths_to_mask(m_lens, l) | |
| if not cond_scale == 1.0: | |
| cond_vector = torch.cat([cond_vector, torch.zeros_like(cond_vector)], dim=0) | |
| # really naive way to write the PrefixAR inferece loop, to be improved | |
| iter = [(0,15),(10,25),(20, 35), (30, 45), (40, l.item())] | |
| out = [context.clone().detach()] | |
| for i in range(len(iter)): | |
| noise = torch.randn(b, self.input_dim, iter[i][1]-iter[i][0]-5, j).to(device) | |
| if not cond_scale == 1.0: | |
| noise = torch.cat([noise, noise], dim=0) | |
| attention_mask = ((~padding_mask)[:, iter[i][0]:iter[i][1]]).unsqueeze(-1).repeat(1,1,self.patches_per_frame).flatten(1).unsqueeze(1).unsqueeze(1) | |
| model_kwargs = dict(conds=cond_vector, attention_mask=attention_mask, context=context, cfg=cond_scale) | |
| sample_fn = self.forward_with_CFG | |
| if not cond_scale == 1: | |
| model_kwargs["attention_mask"] = attention_mask.repeat(2, 1, 1, 1) | |
| if self.diff_model == "Flow": | |
| model_fn = self.gen_diffusion.sample_ode(sampling_method="euler") # default to ode sampling, use euler to prevent underflow as current iter can contain paddings | |
| sampled_token_latent = model_fn(noise, sample_fn, **model_kwargs)[-1] | |
| else: | |
| sampled_token_latent = self.gen_diffusion.p_sample_loop( | |
| sample_fn, noise.shape, noise, clip_denoised=False, model_kwargs=model_kwargs, | |
| progress=False, | |
| temperature=temperature | |
| ) | |
| if not cond_scale == 1: | |
| sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) | |
| out.append(sampled_token_latent.clone().detach()) | |
| context = sampled_token_latent[:, :, 5:, :].clone().detach() | |
| sampled_token_latent = torch.cat(out, dim=2).permute(0,2,3,1) | |
| latents = torch.where(padding_mask.unsqueeze(-1).unsqueeze(-1), torch.zeros_like(sampled_token_latent), sampled_token_latent) | |
| return latents.permute(0,3,1,2) | |
| ################################################################################# | |
| # ACMDM Zoos # | |
| ################################################################################# | |
| def acmdm_prefixar_flow_s_ps22(**kwargs): | |
| layer = 8 | |
| return ACMDM(latent_dim=layer*64, ff_size=layer*64*4, num_layers=layer, num_heads=layer, dropout=0, clip_dim=512, | |
| diff_model="Flow", cond_drop_prob=0.1, max_length=15, | |
| patch_size=(1, 22), stride_size=(1, 22), **kwargs) | |
| ACMDM_models = { | |
| 'ACMDM-PrefixAR-Flow-S-PatchSize22': acmdm_prefixar_flow_s_ps22, | |
| } | |
| ################################################################################# | |
| # Inner Architectures # | |
| ################################################################################# | |
| def modulate(x, shift, scale): | |
| return x * (1 + scale) + shift | |
| class ACMDMAttention(Attention): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads=8, | |
| qkv_bias=True, | |
| rope=None, | |
| qk_norm=True, | |
| **block_kwargs, | |
| ): | |
| super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, **block_kwargs) | |
| self.rope = rope | |
| def forward(self, x, position_ids=None, attention_mask=None): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv.unbind(0) | |
| q, k = self.q_norm(q), self.k_norm(k) | |
| if self.rope is not None: | |
| q, k = self.rope(q, k, position_ids) | |
| x = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v, | |
| attn_mask=attention_mask, | |
| dropout_p=self.attn_drop.p | |
| ) | |
| x = x.transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SwiGLUFFN(nn.Module): | |
| def __init__( | |
| self, | |
| in_features: int, | |
| hidden_features, | |
| bias: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| out_features = in_features | |
| hidden_features = hidden_features | |
| self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) | |
| self.w3 = nn.Linear(hidden_features, out_features, bias=bias) | |
| def forward(self, x): | |
| x12 = self.w12(x) | |
| x1, x2 = x12.chunk(2, dim=-1) | |
| hidden = F.silu(x1) * x2 | |
| return self.w3(hidden) | |
| class ACMDMTransBlock(nn.Module): | |
| def __init__(self, hidden_size, num_heads, mlp_size=1024, rope=None, qk_norm=True): | |
| super().__init__() | |
| self.norm1 = LlamaRMSNorm(hidden_size, eps=1e-6) | |
| self.attn = ACMDMAttention(hidden_size, num_heads=num_heads, qkv_bias=True, norm_layer=LlamaRMSNorm, | |
| qk_norm=qk_norm, rope=rope) | |
| self.norm2 = LlamaRMSNorm(hidden_size, eps=1e-6) | |
| self.mlp = SwiGLUFFN(hidden_size, int(2 / 3 * mlp_size)) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
| ) | |
| def forward(self, x, c, attention_mask=None, position_ids=None): | |
| dtype = x.dtype | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1) | |
| norm_x1 = self.norm1(x.to(torch.float32)).to(dtype) | |
| attn_input_x = modulate(norm_x1, shift_msa, scale_msa) | |
| attn_output_x = self.attn(attn_input_x, attention_mask=attention_mask, position_ids=position_ids) | |
| x = x + gate_msa * attn_output_x | |
| norm_x2 = self.norm2(x.to(torch.float32)).to(dtype) | |
| gate_input_x = modulate(norm_x2, shift_mlp, scale_mlp) | |
| gate_output_x = self.mlp(gate_input_x) | |
| x = x + gate_mlp * gate_output_x | |
| return x | |
| class FinalLayer(nn.Module): | |
| def __init__(self, hidden_size, output_size, patch_size=(1, 22), stride_size=(1,22), patches=1): | |
| super().__init__() | |
| self.norm_final = LlamaRMSNorm(hidden_size, eps=1e-6) | |
| self.patch_size = patch_size | |
| self.stride_size = stride_size | |
| self.patches = patches | |
| self.linear = nn.Linear(hidden_size, output_size*patch_size[0]*patch_size[1], bias=True) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
| ) | |
| def forward(self, x, c): | |
| shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
| norm_x = self.norm_final(x.to(torch.float32)).to(x.dtype) | |
| x = modulate(norm_x, shift, scale) | |
| x = self.linear(x) | |
| x = x.reshape(shape=(x.shape[0], x.shape[1]//self.patches, self.patches, self.patch_size[0], self.patch_size[1], x.shape[-1] // self.patch_size[1])) | |
| x = torch.einsum('nljpqc->nclpjq', x) | |
| x = x.reshape(shape=(x.shape[0], x.shape[1], -1, 22)) | |
| return x | |
| class TimestepEmbedder(nn.Module): | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000, dtype=torch.float32): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=dtype) / half | |
| ).to(device=t.device, dtype=dtype) | |
| args = t[:, None] * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t, dtype=torch.bfloat16): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size, dtype=dtype) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class LlamaRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return (self.weight * hidden_states).to(input_dtype) | |