Spaces:
Sleeping
Sleeping
File size: 18,445 Bytes
15de73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
#!/usr/bin/env python3
"""
Ingestion script for Congressional Bioguide profiles.
Creates SQLite database and FAISS semantic search index.
"""
import json
import sqlite3
import os
import time
from pathlib import Path
from typing import Dict, List, Any
import faiss
import numpy as np
import pickle
from sentence_transformers import SentenceTransformer
class BioguideIngester:
def __init__(self, data_dir: str = "BioguideProfiles", db_path: str = "congress.db"):
self.data_dir = Path(data_dir)
self.db_path = db_path
self.model = None # Load model only when needed for FAISS indexing
def create_database_schema(self):
"""Create SQLite database schema for Congressional profiles."""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Main members table
cursor.execute("""
CREATE TABLE IF NOT EXISTS members (
bio_id TEXT PRIMARY KEY,
family_name TEXT,
given_name TEXT,
middle_name TEXT,
honorific_prefix TEXT,
unaccented_family_name TEXT,
unaccented_given_name TEXT,
unaccented_middle_name TEXT,
birth_date TEXT,
birth_circa INTEGER,
death_date TEXT,
death_circa INTEGER,
profile_text TEXT,
full_name TEXT GENERATED ALWAYS AS (
COALESCE(honorific_prefix || ' ', '') ||
COALESCE(given_name, '') || ' ' ||
COALESCE(middle_name || ' ', '') ||
COALESCE(family_name, '')
) STORED
)
""")
# Images table
cursor.execute("""
CREATE TABLE IF NOT EXISTS images (
id INTEGER PRIMARY KEY AUTOINCREMENT,
bio_id TEXT,
content_url TEXT,
caption TEXT,
FOREIGN KEY (bio_id) REFERENCES members(bio_id)
)
""")
# Job positions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS job_positions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
bio_id TEXT,
job_name TEXT,
job_type TEXT,
start_date TEXT,
start_circa INTEGER,
end_date TEXT,
end_circa INTEGER,
congress_number INTEGER,
congress_name TEXT,
party TEXT,
caucus TEXT,
region_type TEXT,
region_code TEXT,
note TEXT,
FOREIGN KEY (bio_id) REFERENCES members(bio_id)
)
""")
# Relationships table
cursor.execute("""
CREATE TABLE IF NOT EXISTS relationships (
id INTEGER PRIMARY KEY AUTOINCREMENT,
bio_id TEXT,
related_bio_id TEXT,
relationship_type TEXT,
FOREIGN KEY (bio_id) REFERENCES members(bio_id),
FOREIGN KEY (related_bio_id) REFERENCES members(bio_id)
)
""")
# Creative works table
cursor.execute("""
CREATE TABLE IF NOT EXISTS creative_works (
id INTEGER PRIMARY KEY AUTOINCREMENT,
bio_id TEXT,
citation_text TEXT,
FOREIGN KEY (bio_id) REFERENCES members(bio_id)
)
""")
# Assets table
cursor.execute("""
CREATE TABLE IF NOT EXISTS assets (
id INTEGER PRIMARY KEY AUTOINCREMENT,
bio_id TEXT,
name TEXT,
asset_type TEXT,
content_url TEXT,
credit_line TEXT,
accession_number TEXT,
upload_date TEXT,
FOREIGN KEY (bio_id) REFERENCES members(bio_id)
)
""")
# Create indexes for common queries
cursor.execute("CREATE INDEX IF NOT EXISTS idx_family_name ON members(unaccented_family_name)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_given_name ON members(unaccented_given_name)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_birth_date ON members(birth_date)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_death_date ON members(death_date)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_job_congress ON job_positions(congress_number)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_job_party ON job_positions(party)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_job_region ON job_positions(region_code)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_job_type ON job_positions(job_name)")
conn.commit()
conn.close()
print("β Database schema created")
def extract_data_field(self, data: Dict[str, Any], key: str, default=None):
"""Safely extract data from nested 'data' field if it exists."""
if 'data' in data:
return data['data'].get(key, default)
return data.get(key, default)
def ingest_profiles(self):
"""Ingest all JSON profiles into SQLite database."""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
profile_files = list(self.data_dir.glob("*.json"))
total = len(profile_files)
print(f"Ingesting {total} profiles...")
for idx, profile_file in enumerate(profile_files, 1):
if idx % 1000 == 0:
print(f" Processed {idx}/{total} profiles...")
try:
with open(profile_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Handle nested 'data' structure
bio_id = self.extract_data_field(data, 'usCongressBioId')
if not bio_id:
print(f" Skipping {profile_file}: no bio_id found")
continue
# Insert member data
cursor.execute("""
INSERT OR REPLACE INTO members (
bio_id, family_name, given_name, middle_name, honorific_prefix,
unaccented_family_name, unaccented_given_name, unaccented_middle_name,
birth_date, birth_circa, death_date, death_circa, profile_text
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
bio_id,
self.extract_data_field(data, 'familyName'),
self.extract_data_field(data, 'givenName'),
self.extract_data_field(data, 'middleName'),
self.extract_data_field(data, 'honorificPrefix'),
self.extract_data_field(data, 'unaccentedFamilyName'),
self.extract_data_field(data, 'unaccentedGivenName'),
self.extract_data_field(data, 'unaccentedMiddleName'),
self.extract_data_field(data, 'birthDate'),
1 if self.extract_data_field(data, 'birthCirca') else 0,
self.extract_data_field(data, 'deathDate'),
1 if self.extract_data_field(data, 'deathCirca') else 0,
self.extract_data_field(data, 'profileText')
))
# Insert images
images = self.extract_data_field(data, 'image', [])
for img in images:
cursor.execute("""
INSERT INTO images (bio_id, content_url, caption)
VALUES (?, ?, ?)
""", (bio_id, img.get('contentUrl'), img.get('caption')))
# Insert job positions
job_positions = self.extract_data_field(data, 'jobPositions', [])
for job_pos in job_positions:
job = job_pos.get('job', {})
congress_aff = job_pos.get('congressAffiliation', {})
congress = congress_aff.get('congress', {})
party_list = congress_aff.get('partyAffiliation', [])
caucus_list = congress_aff.get('caucusAffiliation', [])
represents = congress_aff.get('represents', {})
notes = congress_aff.get('note', [])
note_text = notes[0].get('content') if notes else None
cursor.execute("""
INSERT INTO job_positions (
bio_id, job_name, job_type, start_date, start_circa,
end_date, end_circa, congress_number, congress_name,
party, caucus, region_type, region_code, note
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
bio_id,
job.get('name'),
job.get('jobType'),
job_pos.get('startDate'),
1 if job_pos.get('startCirca') else 0,
job_pos.get('endDate'),
1 if job_pos.get('endCirca') else 0,
congress.get('congressNumber'),
congress.get('name'),
party_list[0].get('party', {}).get('name') if party_list else None,
caucus_list[0].get('party', {}).get('name') if caucus_list else None,
represents.get('regionType'),
represents.get('regionCode'),
note_text
))
# Insert relationships
relationships = self.extract_data_field(data, 'relationship', [])
for rel in relationships:
related = rel.get('relatedTo', {})
cursor.execute("""
INSERT INTO relationships (bio_id, related_bio_id, relationship_type)
VALUES (?, ?, ?)
""", (bio_id, related.get('usCongressBioId'), rel.get('relationshipType')))
# Insert creative works
creative_works = self.extract_data_field(data, 'creativeWork', [])
for work in creative_works:
cursor.execute("""
INSERT INTO creative_works (bio_id, citation_text)
VALUES (?, ?)
""", (bio_id, work.get('freeFormCitationText')))
# Insert assets
assets = self.extract_data_field(data, 'asset', [])
for asset in assets:
cursor.execute("""
INSERT INTO assets (
bio_id, name, asset_type, content_url, credit_line,
accession_number, upload_date
) VALUES (?, ?, ?, ?, ?, ?, ?)
""", (
bio_id,
asset.get('name'),
asset.get('assetType'),
asset.get('contentUrl'),
asset.get('creditLine'),
asset.get('accessionNumber'),
asset.get('uploadDate')
))
except Exception as e:
print(f" Error processing {profile_file}: {e}")
continue
conn.commit()
conn.close()
print(f"β Ingested {total} profiles into database")
def build_faiss_index(self):
"""Build FAISS index for semantic search on profile biographies."""
print("\n" + "=" * 60)
print("BUILDING FAISS INDEX FOR SEMANTIC SEARCH")
print("=" * 60)
try:
# Load model
print("\n1. Loading sentence transformer model...")
start_time = time.time()
# Disable all parallelism to avoid Python 3.14 issues
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
import torch
torch.set_num_threads(1)
self.model = SentenceTransformer('all-MiniLM-L6-v2')
print(f" β Model loaded in {time.time() - start_time:.3f}s")
# Load biographies from database
print("\n2. Loading biographies from database...")
start_time = time.time()
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("SELECT bio_id, profile_text FROM members WHERE profile_text IS NOT NULL")
profiles = cursor.fetchall()
conn.close()
print(f" β Loaded {len(profiles):,} biographies in {time.time() - start_time:.3f}s")
if len(profiles) == 0:
print("\nβ ERROR: No profiles with text found in database!")
return False
# Prepare data
print("\n3. Preparing data for encoding...")
start_time = time.time()
bio_ids = [p[0] for p in profiles]
texts = [p[1] if p[1] else "" for p in profiles]
print(f" β Prepared {len(bio_ids):,} texts")
print(f" β Time: {time.time() - start_time:.3f}s")
# Generate embeddings in batches
print("\n4. Generating embeddings...")
start_time = time.time()
batch_size = 32
embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
batch_embeddings = self.model.encode(
batch,
show_progress_bar=False,
convert_to_numpy=True,
normalize_embeddings=False,
device='cpu' # Explicit CPU to avoid GPU issues
)
embeddings.extend(batch_embeddings)
# Progress update every 100 batches
if (i // batch_size + 1) % 100 == 0:
elapsed = time.time() - start_time
rate = (i + len(batch)) / elapsed
print(f" Encoded {i + len(batch):,}/{len(texts):,} ({rate:.0f} texts/sec)")
embeddings = np.array(embeddings, dtype=np.float32)
elapsed = time.time() - start_time
print(f" β Generated {len(embeddings):,} embeddings in {elapsed:.3f}s")
print(f" β Shape: {embeddings.shape}")
# Build FAISS index
print("\n5. Building FAISS index...")
start_time = time.time()
dimension = embeddings.shape[1]
print(f" Dimension: {dimension}")
# Use IndexFlatIP for exact cosine similarity search
index = faiss.IndexFlatIP(dimension)
# Normalize embeddings for cosine similarity
faiss.normalize_L2(embeddings)
# Add to index
index.add(embeddings)
print(f" β Index built in {time.time() - start_time:.3f}s")
print(f" β Total vectors in index: {index.ntotal:,}")
# Save FAISS index
print("\n6. Saving FAISS index to disk...")
start_time = time.time()
faiss.write_index(index, "congress_faiss.index")
print(f" β Index saved to: congress_faiss.index")
print(f" β Time: {time.time() - start_time:.3f}s")
# Save note ID mapping
print("\n7. Saving bio ID mapping...")
start_time = time.time()
with open("congress_bio_ids.pkl", "wb") as f:
pickle.dump(bio_ids, f)
print(f" β Mapping saved to: congress_bio_ids.pkl")
print(f" β Time: {time.time() - start_time:.3f}s")
# Get file sizes
from pathlib import Path
index_size_mb = Path("congress_faiss.index").stat().st_size / (1024**2)
mapping_size_mb = Path("congress_bio_ids.pkl").stat().st_size / (1024**2)
print("\n" + "=" * 60)
print("FAISS INDEX BUILD COMPLETE")
print("=" * 60)
print(f"Total embeddings indexed: {len(bio_ids):,}")
print(f"Index file size: {index_size_mb:.2f} MB")
print(f"Mapping file size: {mapping_size_mb:.2f} MB")
print(f"Total size: {index_size_mb + mapping_size_mb:.2f} MB")
print("\nThe MCP server will load this index on startup for fast searches.")
return True
except Exception as e:
print(f"\nβ ERROR building FAISS index: {e}")
print(f" This may be due to Python 3.14 compatibility issues.")
print(f" The database is still usable, but semantic search will not work.")
print(f" Consider using Python 3.11 or 3.12 for full functionality.")
import traceback
traceback.print_exc()
return False
def run(self):
"""Run the complete ingestion pipeline."""
print("Starting Congressional Bioguide ingestion...")
print("=" * 60)
try:
self.create_database_schema()
self.ingest_profiles()
faiss_success = self.build_faiss_index()
print("\n" + "=" * 60)
print("INGESTION COMPLETE")
print("=" * 60)
print(f"Database: {self.db_path}")
if faiss_success:
print(f"FAISS index: congress_faiss.index β")
print(f"ID mapping: congress_bio_ids.pkl β")
print("\nAll features available, including semantic search!")
else:
print(f"FAISS index: β (failed to build)")
print("\nDatabase is ready, but semantic search is unavailable.")
print("All other MCP tools will work normally.")
return faiss_success
except Exception as e:
print(f"\nβ FATAL ERROR: {e}")
import traceback
traceback.print_exc()
return False
def main():
ingester = BioguideIngester()
ingester.run()
if __name__ == "__main__":
main()
|