Update app.py
Browse files
app.py
CHANGED
|
@@ -21,67 +21,57 @@ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validat
|
|
| 21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 22 |
|
| 23 |
|
| 24 |
-
print(
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
else:
|
| 80 |
-
|
| 81 |
-
def greet(name):
|
| 82 |
-
return "Hello " + name
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 86 |
-
|
| 87 |
-
demo.launch()
|
|
|
|
| 21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 22 |
|
| 23 |
|
| 24 |
+
print("Blocks interface does not work, hmm",gr.__version__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def translate(audio):
|
| 30 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
| 31 |
+
return outputs["text"]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def synthesise(text):
|
| 35 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 36 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
| 37 |
+
return speech.cpu()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def speech_to_speech_translation(audio):
|
| 41 |
+
translated_text = translate(audio)
|
| 42 |
+
synthesised_speech = synthesise(translated_text)
|
| 43 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 44 |
+
return 16000, synthesised_speech
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
title = "Cascaded STST"
|
| 48 |
+
description = """
|
| 49 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
| 50 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 51 |
+
|
| 52 |
+

|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
demo = gr.Blocks()
|
| 56 |
+
|
| 57 |
+
mic_translate = gr.Interface(
|
| 58 |
+
fn=speech_to_speech_translation,
|
| 59 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 60 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 61 |
+
title=title,
|
| 62 |
+
description=description,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
file_translate = gr.Interface(
|
| 66 |
+
fn=speech_to_speech_translation,
|
| 67 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
| 68 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 69 |
+
examples=[["./example.wav"]],
|
| 70 |
+
title=title,
|
| 71 |
+
description=description,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with demo:
|
| 75 |
+
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 76 |
+
|
| 77 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|