Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoTokenizer, AutoModel | |
| import torch | |
| repo_id = "OpenGVLab/InternVL2-1B" | |
| # Load the image processor, tokenizer, and model directly from the Hub | |
| image_processor = AutoImageProcessor.from_pretrained(repo_id, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True) | |
| model = AutoModel.from_pretrained( | |
| repo_id, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 # Use half-precision for efficiency | |
| ) | |
| # Move model to the appropriate device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| def analyze_image(image): | |
| try: | |
| img = image.convert("RGB") | |
| text = "describe this image" | |
| # Process the image | |
| image_inputs = image_processor(images=img, return_tensors="pt").to(device) | |
| # Process the text | |
| text_inputs = tokenizer(text, return_tensors="pt").to(device) | |
| # Combine the inputs | |
| inputs = { | |
| "input_ids": text_inputs["input_ids"], | |
| "attention_mask": text_inputs["attention_mask"], | |
| "pixel_values": image_inputs["pixel_values"], | |
| } | |
| # Generate outputs | |
| outputs = model.generate(**inputs) | |
| # Decode the outputs | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return generated_text | |
| except Exception as e: | |
| return f"An error occurred: {str(e)}" | |
| demo = gr.Interface( | |
| fn=analyze_image, | |
| inputs=gr.Image(type="pil"), | |
| outputs="text", | |
| title="Image Description using InternVL2-1B", | |
| description="Upload an image and get a description generated by the InternVL2-1B model." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |