Robust Preference Optimization via Dynamic Target Margins
Paper
•
2506.03690
•
Published
•
2
We fine-tuned meta-llama/Meta-Llama-3-8B-Instruct on princeton-nlp/llama3-ultrafeedback-armorm with the gamma-SimPO objective.
Developed by: Jie Sun, Junkang Wu, Jiancan Wu, Zhibo Zhu, Xingyu Lu, Jun Zhou, Lintao Ma, Xiang Wang
Model type: Causal Language Model
License: gemma
Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
Repository: https://github.com/sunjie279/gammaPO
import torch
from transformers import pipeline
model_id = "Sunshine279/gammaPO-llama-3-8b-instruct"
generator = pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}],
do_sample=False,
eos_token_id=[generator.tokenizer.convert_tokens_to_ids("<end_of_turn>"), generator.tokenizer.eos_token_id],
max_new_tokens=200)
print(outputs[0]['generated_text'])
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.1544 | 0.8550 | 400 | 1.1389 | -20.8453 | -29.4063 | 0.8679 | 8.5610 | -2.9406 | -2.0845 | -1.7197 | -1.7101 |
Base model
meta-llama/Meta-Llama-3-8B-Instruct