genv3pair1NoGT_1.5B_cdpo_lm1_ebs32_lr5e-07_beta0.4_epoch2.0_42
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the YuchenLi01/MATH_Qwen2.5-1.5BInstruct_DPO_MoreUniqueResponseNoGTv3pair1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0851
- Rewards/chosen: 3.6477
- Rewards/rejected: 0.0
- Rewards/accuracies: 0.9750
- Rewards/margins: 3.6477
- Logps/rejected: -32.4202
- Logps/chosen: -21.0129
- Logits/rejected: -3.1284
- Logits/chosen: -3.1480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.6588 | 0.1117 | 20 | 0.6311 | 0.1456 | 0.0 | 0.8500 | 0.1456 | -41.3269 | -29.7683 | -2.2472 | -2.3913 |
| 0.2837 | 0.2235 | 40 | 0.2656 | 1.2679 | 0.0 | 1.0 | 1.2679 | -38.2536 | -26.9624 | -2.4756 | -2.5889 |
| 0.1233 | 0.3352 | 60 | 0.1276 | 2.5406 | 0.0 | 0.9750 | 2.5406 | -34.8732 | -23.7808 | -2.8206 | -2.8916 |
| 0.0962 | 0.4469 | 80 | 0.1117 | 2.9076 | 0.0 | 0.9750 | 2.9076 | -34.0203 | -22.8632 | -2.9288 | -2.9836 |
| 0.0553 | 0.5587 | 100 | 0.1016 | 3.0559 | 0.0 | 0.9750 | 3.0559 | -33.6358 | -22.4924 | -2.9561 | -3.0071 |
| 0.0726 | 0.6704 | 120 | 0.0958 | 3.2040 | 0.0 | 0.9750 | 3.2040 | -33.4311 | -22.1222 | -2.9964 | -3.0403 |
| 0.1258 | 0.7821 | 140 | 0.0888 | 3.3241 | 0.0 | 0.9750 | 3.3241 | -33.1697 | -21.8221 | -3.0271 | -3.0653 |
| 0.0893 | 0.8939 | 160 | 0.0879 | 3.3264 | 0.0 | 0.9750 | 3.3264 | -33.0388 | -21.8162 | -3.0308 | -3.0702 |
| 0.0533 | 1.0056 | 180 | 0.0877 | 3.3835 | 0.0 | 1.0 | 3.3835 | -32.9710 | -21.6734 | -3.0340 | -3.0697 |
| 0.0703 | 1.1173 | 200 | 0.0863 | 3.4674 | 0.0 | 0.9750 | 3.4674 | -32.7157 | -21.4637 | -3.0695 | -3.1021 |
| 0.055 | 1.2291 | 220 | 0.0840 | 3.5212 | 0.0 | 0.9750 | 3.5212 | -32.5450 | -21.3292 | -3.0958 | -3.1239 |
| 0.0541 | 1.3408 | 240 | 0.0855 | 3.5919 | 0.0 | 0.9750 | 3.5919 | -32.4004 | -21.1524 | -3.1054 | -3.1280 |
| 0.0488 | 1.4525 | 260 | 0.0843 | 3.6084 | 0.0 | 0.9750 | 3.6084 | -32.4565 | -21.1114 | -3.1164 | -3.1373 |
| 0.0412 | 1.5642 | 280 | 0.0830 | 3.6169 | 0.0 | 0.9750 | 3.6169 | -32.4072 | -21.0901 | -3.1194 | -3.1392 |
| 0.1167 | 1.6760 | 300 | 0.0859 | 3.6349 | 0.0 | 1.0 | 3.6349 | -32.4206 | -21.0449 | -3.1284 | -3.1490 |
| 0.0815 | 1.7877 | 320 | 0.0836 | 3.6527 | 0.0 | 1.0 | 3.6527 | -32.3812 | -21.0004 | -3.1288 | -3.1496 |
| 0.0689 | 1.8994 | 340 | 0.0849 | 3.6484 | 0.0 | 0.9750 | 3.6484 | -32.4245 | -21.0113 | -3.1296 | -3.1497 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.5.0
- Tokenizers 0.20.3
- Downloads last month
- 4