|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Script to segment IMO shortlist md files using regex. It takes as input |
|
|
the file en-compendium.md in en-shortlist and outputs the segmentation |
|
|
(problem/solution pairs) in en-shortlist-seg |
|
|
To run: |
|
|
`python segment_compendium.py` |
|
|
To debug (or see covered use cases by regex): |
|
|
`pytest test_segment_compendium` |
|
|
""" |
|
|
|
|
|
import json |
|
|
import os |
|
|
from pathlib import Path |
|
|
import re |
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
base = "en-shortlist" |
|
|
seg_base = "en-shortlist-seg" |
|
|
basename = "en-compendium" |
|
|
|
|
|
|
|
|
level1_re = re.compile(r"^##\s+(Problems|Solutions|Notation and Abbreviations)$") |
|
|
year_re = re.compile(r"^[^=]*,\s+(\d{4})\s*$") |
|
|
problem_section_re = re.compile(r"^###\s+(\d+\.\d+\.\d+)\s+(.+)$") |
|
|
solution_section_re = re.compile(r"^###\s+(\d+\.\d+)\s+([\w\s]+)\s+(\d{4})$") |
|
|
problem_or_solution_re = re.compile(r"^(?:\[.*?\])?\s*(\d+)\s*\.\s*(.+)$") |
|
|
|
|
|
|
|
|
def add_content(current_dict): |
|
|
required_keys = ["year", "category", "section_label", "label", "lines"] |
|
|
if not all(current_dict[key] for key in required_keys): |
|
|
return |
|
|
text_str = " ".join(current_dict["lines"]).strip() |
|
|
entry = { |
|
|
"year": current_dict["year"], |
|
|
"category": current_dict["category"], |
|
|
"section": current_dict["section_label"], |
|
|
"label": current_dict["label"], |
|
|
} |
|
|
if current_dict["class"] == "problem": |
|
|
entry["problem"] = text_str |
|
|
current_dict["problems"].append(entry) |
|
|
elif current_dict["class"] == "solution": |
|
|
entry["solution"] = text_str |
|
|
current_dict["solutions"].append(entry) |
|
|
|
|
|
|
|
|
def get_category(s: str): |
|
|
cat = None |
|
|
if "contest" in s.lower(): |
|
|
cat = "contest" |
|
|
elif "shortlisted" in s.lower(): |
|
|
cat = "shortlisted" |
|
|
elif "longlisted" in s.lower(): |
|
|
cat = "longlisted" |
|
|
return cat |
|
|
|
|
|
|
|
|
def get_matching_section_label(s: str): |
|
|
""" |
|
|
extracts the section number to be used a a join key to pair a problem and solution |
|
|
for problems: 3.44.1 -> 44 |
|
|
for solutions: 4.20 -> 20 |
|
|
""" |
|
|
return s.split(".")[1] |
|
|
|
|
|
|
|
|
def parse(file): |
|
|
with open(file, "r", encoding="utf-8") as file: |
|
|
content = file.read() |
|
|
|
|
|
current = { |
|
|
"year": None, |
|
|
"category": None, |
|
|
"section_label": None, |
|
|
"label": None, |
|
|
"class": None, |
|
|
"lines": [], |
|
|
"problems": [], |
|
|
"solutions": [], |
|
|
} |
|
|
for line in content.splitlines(): |
|
|
if match := level1_re.match(line): |
|
|
add_content(current) |
|
|
(title,) = match.groups() |
|
|
current["class"] = { |
|
|
"Problems": "problem", |
|
|
"Solutions": "solution", |
|
|
}.get(title, "other") |
|
|
current["lines"] = [] |
|
|
elif match := year_re.match(line): |
|
|
add_content(current) |
|
|
current["year"] = match.group(1) |
|
|
current["lines"] = [] |
|
|
elif match := problem_section_re.match(line): |
|
|
add_content(current) |
|
|
number, title = match.groups() |
|
|
current["section_label"] = get_matching_section_label(number) |
|
|
current["category"] = get_category(title) |
|
|
current["lines"] = [] |
|
|
elif match := solution_section_re.match(line): |
|
|
add_content(current) |
|
|
number, title, year = match.groups() |
|
|
current["section_label"] = get_matching_section_label(number) |
|
|
current["category"] = get_category(title) |
|
|
current["year"] = year |
|
|
current["lines"] = [] |
|
|
elif match := problem_or_solution_re.match(line): |
|
|
add_content(current) |
|
|
current["label"] = match.group(1) |
|
|
current["lines"] = [line] |
|
|
else: |
|
|
if current["lines"]: |
|
|
current["lines"].append(line) |
|
|
problems_df = pd.DataFrame(current["problems"]) |
|
|
solutions_df = pd.DataFrame(current["solutions"]) |
|
|
return problems_df, solutions_df |
|
|
|
|
|
|
|
|
def join(problems_df, solutions_df): |
|
|
pairs_df = problems_df.merge( |
|
|
solutions_df, on=["year", "category", "section", "label"], how="outer" |
|
|
) |
|
|
return pairs_df |
|
|
|
|
|
|
|
|
def add_metadata(pairs_df, resource_path): |
|
|
problem_type_mapping = { |
|
|
"A": "Algebra", |
|
|
"C": "Combinatorics", |
|
|
"G": "Geometry", |
|
|
"N": "Number Theory", |
|
|
} |
|
|
pairs_df["problem_type"] = pairs_df["problem"].str.extract(r"^\d+\.\s*([ACGN])\d*")[ |
|
|
0 |
|
|
] |
|
|
pairs_df["problem_type"] = pairs_df["problem_type"].map(problem_type_mapping) |
|
|
pairs_df["tier"] = "T0" |
|
|
pairs_df["exam"] = "IMO" |
|
|
pairs_df["metadata"] = [{"resource_path": resource_path}] * len(pairs_df) |
|
|
pairs_df.rename( |
|
|
columns={"category": "problem_phase", "label": "problem_label"}, |
|
|
inplace=True, |
|
|
) |
|
|
|
|
|
return pairs_df[ |
|
|
[ |
|
|
"year", |
|
|
"tier", |
|
|
"problem_label", |
|
|
"problem_type", |
|
|
"exam", |
|
|
"problem", |
|
|
"solution", |
|
|
"metadata", |
|
|
] |
|
|
] |
|
|
|
|
|
|
|
|
def write_pairs(file_path, pairs_df): |
|
|
pairs_df = pairs_df.replace({pd.NA: None, pd.NaT: None, float("nan"): None}) |
|
|
pairs_dict = pairs_df.to_dict(orient="records") |
|
|
output_text = "" |
|
|
for pair in pairs_dict: |
|
|
output_text += json.dumps(pair, ensure_ascii=False) + "\n" |
|
|
file_path.write_text(output_text, encoding="utf-8") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
project_root = Path(__file__).parent.parent.parent |
|
|
compet_base_path = Path(__file__).resolve().parent.parent |
|
|
compet_md_path = compet_base_path / "md" |
|
|
seg_output_path = compet_base_path / "segmented" |
|
|
|
|
|
for md_file in compet_md_path.glob("**/*.md"): |
|
|
if "compendium" in md_file.name: |
|
|
output_file = seg_output_path / md_file.relative_to( |
|
|
compet_md_path |
|
|
).with_suffix(".jsonl") |
|
|
output_file.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
problems, solutions = parse(md_file) |
|
|
pairs_df = join(problems, solutions) |
|
|
pairs_df = pairs_df[pairs_df.notnull().all(axis=1)] |
|
|
pairs_df = add_metadata( |
|
|
pairs_df, output_file.relative_to(project_root).as_posix() |
|
|
) |
|
|
write_pairs(output_file, pairs_df) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|