Sentiment RoBERTa Taglish
A fine-tuned RoBERTa model for sentiment analysis on Taglish (Tagalog + English) Shopee comments. Developed as part of a project for DOST-STII-IRAD by an APC College group.
Model Details
- Base model:
dost-asti/RoBERTa-tl-sentiment-analysis - Tokenizer:
AutoTokenizer.from_pretrained("dost-asti/RoBERTa-tl-sentiment-analysis") - Task: Sequence classification (Sentiment analysis)
- Labels:
0= Negative1= Neutral2= Positive
- Dataset used:
letijo03/sentiment-analysis-taglish-shopee-comment(train split) - Framework: PyTorch
Training & Evaluation
Evaluation Metrics
Test Set Performance:
- Accuracy: 0.8630
- Macro F1 Score: 0.6939
- Weighted Average F1 Score: 0.8686
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load tokenizer and model from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained("ldlazaro/sentiment_roberta_taglish")
model = AutoModelForSequenceClassification.from_pretrained("ldlazaro/sentiment_roberta_taglish")
# Example inference
text = "Ang ganda ng araw na ito!"
inputs = tokenizer(text, return_tensors="pt")
pred = model(**inputs).logits.argmax(-1)
print(pred.item())
- Downloads last month
- 37