Sentiment RoBERTa Taglish

A fine-tuned RoBERTa model for sentiment analysis on Taglish (Tagalog + English) Shopee comments. Developed as part of a project for DOST-STII-IRAD by an APC College group.


Model Details

  • Base model: dost-asti/RoBERTa-tl-sentiment-analysis
  • Tokenizer: AutoTokenizer.from_pretrained("dost-asti/RoBERTa-tl-sentiment-analysis")
  • Task: Sequence classification (Sentiment analysis)
  • Labels:
    • 0 = Negative
    • 1 = Neutral
    • 2 = Positive
  • Dataset used: letijo03/sentiment-analysis-taglish-shopee-comment (train split)
  • Framework: PyTorch

Training & Evaluation

Evaluation Metrics

Test Set Performance:

  • Accuracy: 0.8630
  • Macro F1 Score: 0.6939
  • Weighted Average F1 Score: 0.8686

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Load tokenizer and model from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained("ldlazaro/sentiment_roberta_taglish")
model = AutoModelForSequenceClassification.from_pretrained("ldlazaro/sentiment_roberta_taglish")

# Example inference
text = "Ang ganda ng araw na ito!"
inputs = tokenizer(text, return_tensors="pt")
pred = model(**inputs).logits.argmax(-1)
print(pred.item())



Downloads last month
37
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support