SentenceTransformer based on FacebookAI/roberta-large-mnli
This is a sentence-transformers model finetuned from FacebookAI/roberta-large-mnli. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-large-mnli
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2")
# Run inference
sentences = [
'A motorbike rider is barreling across a grass lawn.',
'The rider is outdoors on a motorbike.',
'The girl is wearing a shirt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8457 |
| spearman_cosine | 0.8101 |
| pearson_manhattan | 0.8108 |
| spearman_manhattan | 0.7917 |
| pearson_euclidean | 0.8106 |
| spearman_euclidean | 0.7916 |
| pearson_dot | 0.8567 |
| spearman_dot | 0.8163 |
| pearson_max | 0.8567 |
| spearman_max | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 72,338 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 5 tokens
- mean: 18.11 tokens
- max: 82 tokens
- min: 5 tokens
- mean: 12.82 tokens
- max: 65 tokens
- 0: ~50.70%
- 1: ~49.30%
- Samples:
sentence_0 sentence_1 label Hows would you create strategies and tactics in various combat situations?I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish?0Man from the army speaking with civilian women.The man is a sergeant0An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel.Someone has black pants.1 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | eval_spearman_max |
|---|---|---|---|
| 0.1106 | 500 | 0.1845 | 0.6681 |
| 0.2211 | 1000 | 0.0942 | 0.7711 |
| 0.3317 | 1500 | 0.0821 | 0.6355 |
| 0.4423 | 2000 | 0.0794 | 0.7283 |
| 0.5529 | 2500 | 0.0788 | 0.7129 |
| 0.6634 | 3000 | 0.0737 | 0.7853 |
| 0.7740 | 3500 | 0.07 | 0.7013 |
| 0.8846 | 4000 | 0.0686 | 0.7809 |
| 0.9951 | 4500 | 0.0683 | 0.7578 |
| 1.0 | 4522 | - | 0.7976 |
| 1.1057 | 5000 | 0.07 | 0.7749 |
| 1.2163 | 5500 | 0.0656 | 0.7826 |
| 1.3268 | 6000 | 0.0587 | 0.8032 |
| 1.4374 | 6500 | 0.0584 | 0.7666 |
| 1.5480 | 7000 | 0.0582 | 0.7917 |
| 1.6586 | 7500 | 0.0546 | 0.7945 |
| 1.7691 | 8000 | 0.0528 | 0.7786 |
| 1.8797 | 8500 | 0.051 | 0.7732 |
| 1.9903 | 9000 | 0.0527 | 0.7996 |
| 2.0 | 9044 | - | 0.7898 |
| 2.1008 | 9500 | 0.0509 | 0.7957 |
| 2.2114 | 10000 | 0.0492 | 0.7988 |
| 2.3220 | 10500 | 0.0451 | 0.8044 |
| 2.4326 | 11000 | 0.0443 | 0.7961 |
| 2.5431 | 11500 | 0.0445 | 0.7975 |
| 2.6537 | 12000 | 0.0433 | 0.8054 |
| 2.7643 | 12500 | 0.0394 | 0.7890 |
| 2.8748 | 13000 | 0.0387 | 0.8020 |
| 2.9854 | 13500 | 0.0401 | 0.8096 |
| 3.0 | 13566 | - | 0.8087 |
| 3.0960 | 14000 | 0.0399 | 0.8098 |
| 3.2065 | 14500 | 0.039 | 0.8077 |
| 3.3171 | 15000 | 0.0346 | 0.8021 |
| 3.4277 | 15500 | 0.0339 | 0.8082 |
| 3.5383 | 16000 | 0.0347 | 0.8150 |
| 3.6488 | 16500 | 0.0352 | 0.8144 |
| 3.7594 | 17000 | 0.032 | 0.8141 |
| 3.8700 | 17500 | 0.0326 | 0.8151 |
| 3.9805 | 18000 | 0.0318 | 0.8162 |
| 4.0 | 18088 | - | 0.8163 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Model tree for richie-ghost/sbert_facebook_large_mnli_openVino2
Base model
FacebookAI/roberta-large-mnliEvaluation results
- Pearson Cosine on evalself-reported0.846
- Spearman Cosine on evalself-reported0.810
- Pearson Manhattan on evalself-reported0.811
- Spearman Manhattan on evalself-reported0.792
- Pearson Euclidean on evalself-reported0.811
- Spearman Euclidean on evalself-reported0.792
- Pearson Dot on evalself-reported0.857
- Spearman Dot on evalself-reported0.816
- Pearson Max on evalself-reported0.857
- Spearman Max on evalself-reported0.816