File size: 2,063 Bytes
a93fbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import json
from datasets import load_dataset, Dataset
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments
)
from peft import LoraConfig
from trl import SFTTrainer

# ---------- 1. Load rubpy dataset ----------
with open("rubpy_full_dataset.json", encoding="utf-8") as f:
    rubpy_data = json.load(f)

rubpy_dataset = Dataset.from_list([
    {
        "text": f"""### Instruction:
{item['instruction']}

### Response:
{item['output']}"""
    }
    for item in rubpy_data
])

# ---------- 2. Load public code dataset ----------
public_dataset = load_dataset(
    "deepmind/code_contests",
    split="train"
)

public_dataset = public_dataset.map(lambda x: {
    "text": f"""### Instruction:
مسئله برنامه‌نویسی را حل کن:

{x['description']}

### Response:
{x['solution']}"""
})

# ---------- 3. Combine datasets ----------
final_dataset = rubpy_dataset.concatenate(
    public_dataset.shuffle(seed=42).select(range(len(rubpy_dataset)))
)

# ---------- 4. Model ----------
MODEL_NAME = "Qwen/Qwen2.5-Coder-7B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    load_in_4bit=True,
    device_map="auto"
)

# ---------- 5. LoRA ----------
lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

# ---------- 6. Training ----------
training_args = TrainingArguments(
    output_dir="./rubpy-model",
    per_device_train_batch_size=1,
    gradient_accumulation_steps=8,
    learning_rate=2e-4,
    num_train_epochs=3,
    logging_steps=10,
    save_steps=500,
    save_total_limit=2,
    bf16=True,
    report_to="none"
)

trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=final_dataset,
    peft_config=lora_config,
    args=training_args,
    max_seq_length=2048
)

trainer.train()

trainer.save_model("./rubpy-model")