rubpy-coder / train.py
Mirdehghan's picture
Create train.py
a93fbd2 verified
raw
history blame
2.06 kB
import json
from datasets import load_dataset, Dataset
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments
)
from peft import LoraConfig
from trl import SFTTrainer
# ---------- 1. Load rubpy dataset ----------
with open("rubpy_full_dataset.json", encoding="utf-8") as f:
rubpy_data = json.load(f)
rubpy_dataset = Dataset.from_list([
{
"text": f"""### Instruction:
{item['instruction']}
### Response:
{item['output']}"""
}
for item in rubpy_data
])
# ---------- 2. Load public code dataset ----------
public_dataset = load_dataset(
"deepmind/code_contests",
split="train"
)
public_dataset = public_dataset.map(lambda x: {
"text": f"""### Instruction:
مسئله برنامه‌نویسی را حل کن:
{x['description']}
### Response:
{x['solution']}"""
})
# ---------- 3. Combine datasets ----------
final_dataset = rubpy_dataset.concatenate(
public_dataset.shuffle(seed=42).select(range(len(rubpy_dataset)))
)
# ---------- 4. Model ----------
MODEL_NAME = "Qwen/Qwen2.5-Coder-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
load_in_4bit=True,
device_map="auto"
)
# ---------- 5. LoRA ----------
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# ---------- 6. Training ----------
training_args = TrainingArguments(
output_dir="./rubpy-model",
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
learning_rate=2e-4,
num_train_epochs=3,
logging_steps=10,
save_steps=500,
save_total_limit=2,
bf16=True,
report_to="none"
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=final_dataset,
peft_config=lora_config,
args=training_args,
max_seq_length=2048
)
trainer.train()
trainer.save_model("./rubpy-model")