abmelt-benchmark / src /model_inference.py
ZijianGuan's picture
Upload folder using huggingface_hub
8ef403e verified
#!/usr/bin/env python3
"""
Model inference module for AbMelt pipeline.
Loads trained models and makes predictions on computed descriptors.
"""
import logging
import joblib
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import warnings
warnings.filterwarnings("ignore")
logger = logging.getLogger(__name__)
class AbMeltPredictor:
"""
Predictor class that loads trained models and makes predictions.
"""
def __init__(self, models_dir: Path = None):
"""
Initialize the predictor with model directory.
Args:
models_dir: Path to directory containing trained models
"""
if models_dir is None:
# Default to local models directory
current_dir = Path(__file__).parent
models_dir = current_dir.parent / "models"
self.models_dir = Path(models_dir)
# Model paths
self.model_paths = {
"tagg": self.models_dir / "tagg" / "efs_best_knn.pkl",
"tm": self.models_dir / "tm" / "efs_best_randomforest.pkl",
"tmon": self.models_dir / "tmon" / "efs_best_elasticnet.pkl",
}
# Feature definitions for each model
# These are the features selected by exhaustive feature selection
self.model_features = {
"tagg": [
"rmsf_cdrs_mu_400",
"gyr_cdrs_Rg_std_400",
"all-temp_lamda_b=25_eq=20"
],
"tm": [
"gyr_cdrs_Rg_std_350",
"bonds_contacts_std_350",
"rmsf_cdrl1_std_350"
],
"tmon": [
"bonds_contacts_std_350",
"all-temp-sasa_core_mean_k=20_eq=20",
"all-temp-sasa_core_std_k=20_eq=20",
"r-lamda_b=2.5_eq=20"
]
}
# Loaded models cache
self.loaded_models = {}
# Validate model files exist
self._validate_models()
def _validate_models(self):
"""Validate that all model files exist."""
missing_models = []
for model_name, model_path in self.model_paths.items():
if not model_path.exists():
missing_models.append(f"{model_name}: {model_path}")
if missing_models:
raise FileNotFoundError(
f"Missing model files:\n" + "\n".join(missing_models)
)
logger.info(f"Validated {len(self.model_paths)} model files")
def load_model(self, model_name: str):
"""
Load a trained model from disk.
Args:
model_name: Name of the model (tagg, tm, or tmon)
Returns:
Loaded scikit-learn model
"""
if model_name not in self.model_paths:
raise ValueError(
f"Unknown model: {model_name}. "
f"Available models: {list(self.model_paths.keys())}"
)
# Check cache first
if model_name in self.loaded_models:
logger.debug(f"Using cached model: {model_name}")
return self.loaded_models[model_name]
# Load model
model_path = self.model_paths[model_name]
logger.info(f"Loading model: {model_name} from {model_path}")
try:
model = joblib.load(model_path)
self.loaded_models[model_name] = model
logger.info(f"Successfully loaded {model_name} model")
return model
except Exception as e:
logger.error(f"Failed to load model {model_name}: {e}")
raise
def extract_features(self, descriptors_df: pd.DataFrame, model_name: str) -> pd.DataFrame:
"""
Extract required features for a specific model.
Args:
descriptors_df: DataFrame containing all computed descriptors
model_name: Name of the model
Returns:
DataFrame with only the features required by the model
"""
required_features = self.model_features[model_name]
# Check which features are available
available_features = descriptors_df.columns.tolist()
missing_features = [f for f in required_features if f not in available_features]
if missing_features:
logger.error(f"Missing features for {model_name}: {missing_features}")
logger.error(f"Available features: {available_features}")
raise ValueError(
f"Missing required features for {model_name}: {missing_features}"
)
# Extract features in the correct order
features_df = descriptors_df[required_features].copy()
logger.info(f"Extracted {len(required_features)} features for {model_name}")
logger.debug(f"Features: {required_features}")
return features_df
def predict(self, descriptors_df: pd.DataFrame, model_name: str) -> np.ndarray:
"""
Make prediction using a specific model.
Args:
descriptors_df: DataFrame containing all computed descriptors
model_name: Name of the model (tagg, tm, or tmon)
Returns:
Array of predictions
"""
# Load model
model = self.load_model(model_name)
# Extract required features
features_df = self.extract_features(descriptors_df, model_name)
# Make prediction
logger.info(f"Making prediction with {model_name} model...")
predictions = model.predict(features_df)
logger.info(f"Prediction completed: {predictions}")
return predictions
def predict_all(self, descriptors_df: pd.DataFrame) -> Dict[str, np.ndarray]:
"""
Make predictions using all three models.
Args:
descriptors_df: DataFrame containing all computed descriptors
Returns:
Dictionary mapping model name to predictions
"""
logger.info("Making predictions with all models...")
predictions = {}
for model_name in ["tagg", "tm", "tmon"]:
try:
pred = self.predict(descriptors_df, model_name)
predictions[model_name] = pred
except Exception as e:
logger.error(f"Failed to predict with {model_name}: {e}")
predictions[model_name] = None
return predictions
def run_model_inference(descriptor_result: Dict, config: Dict) -> Dict:
"""
Main entry point for model inference.
Args:
descriptor_result: Dictionary containing descriptors DataFrame
config: Configuration dictionary
Returns:
Dictionary containing predictions and metadata
"""
logger.info("Starting model inference...")
descriptors_df = descriptor_result["descriptors_df"]
work_dir = Path(descriptor_result["work_dir"])
antibody_name = work_dir.name
# Initialize predictor
try:
predictor = AbMeltPredictor()
except Exception as e:
logger.error(f"Failed to initialize predictor: {e}")
raise
# Make predictions
try:
predictions = predictor.predict_all(descriptors_df)
except Exception as e:
logger.error(f"Prediction failed: {e}")
raise
# Format results
results = _format_predictions(predictions, antibody_name)
# Save predictions
try:
_save_predictions(results, work_dir, antibody_name)
except Exception as e:
logger.warning(f"Failed to save predictions: {e}")
logger.info("Model inference completed successfully")
return {
"status": "success",
"predictions": predictions,
"results": results,
"work_dir": str(work_dir),
"message": "Model inference completed successfully"
}
def _format_predictions(predictions: Dict[str, np.ndarray], antibody_name: str) -> pd.DataFrame:
"""
Format predictions into a readable DataFrame.
Args:
predictions: Dictionary mapping model name to predictions
antibody_name: Name of the antibody
Returns:
DataFrame with formatted results
"""
results_data = {
"antibody": [antibody_name],
}
# Add predictions for each target
target_names = {
"tagg": "T_agg (°C)",
"tm": "T_m (°C)",
"tmon": "T_m_onset (°C)"
}
for model_name, pred in predictions.items():
if pred is not None:
# Convert from standardized/scaled value to actual temperature
# Note: These are still relative values unless you have the original scaling
target_name = target_names.get(model_name, model_name)
results_data[target_name] = [float(pred[0]) if len(pred) > 0 else None]
else:
target_name = target_names.get(model_name, model_name)
results_data[target_name] = [None]
results_df = pd.DataFrame(results_data)
logger.info("Prediction results:")
logger.info(f"\n{results_df.to_string(index=False)}")
return results_df
def _save_predictions(results: pd.DataFrame, work_dir: Path, antibody_name: str):
"""
Save predictions to files.
Args:
results: DataFrame containing formatted results
work_dir: Working directory
antibody_name: Name of the antibody
"""
# Save to CSV
csv_path = work_dir / f"{antibody_name}_predictions.csv"
results.to_csv(csv_path, index=False)
logger.info(f"Saved predictions to {csv_path}")
# Also save to a summary file in the results directory
try:
results_dir = work_dir.parent.parent / "results"
results_dir.mkdir(parents=True, exist_ok=True)
summary_path = results_dir / "predictions_summary.csv"
# Append to summary file if it exists, otherwise create new
if summary_path.exists():
existing = pd.read_csv(summary_path)
combined = pd.concat([existing, results], ignore_index=True)
combined.to_csv(summary_path, index=False)
logger.info(f"Appended predictions to {summary_path}")
else:
results.to_csv(summary_path, index=False)
logger.info(f"Created predictions summary at {summary_path}")
except Exception as e:
logger.warning(f"Could not save to summary file: {e}")
def load_existing_predictions(work_dir: Path, antibody_name: str) -> Dict:
"""
Load previously computed predictions from disk.
Args:
work_dir: Working directory
antibody_name: Name of the antibody
Returns:
Dictionary containing predictions
"""
csv_path = work_dir / f"{antibody_name}_predictions.csv"
if not csv_path.exists():
raise FileNotFoundError(f"Predictions file not found: {csv_path}")
logger.info(f"Loading existing predictions from {csv_path}")
results_df = pd.read_csv(csv_path)
# Extract predictions back into dictionary format
predictions = {
"tagg": np.array([results_df["T_agg (°C)"].values[0]]) if "T_agg (°C)" in results_df.columns else None,
"tm": np.array([results_df["T_m (°C)"].values[0]]) if "T_m (°C)" in results_df.columns else None,
"tmon": np.array([results_df["T_m_onset (°C)"].values[0]]) if "T_m_onset (°C)" in results_df.columns else None,
}
return {
"status": "success",
"predictions": predictions,
"results": results_df,
"work_dir": str(work_dir),
"message": "Loaded existing predictions"
}