JeffreyXiang's picture
Finalize
a1e3f5f
import torch
import torch.nn as nn
from ..utils import manual_cast
from . import VarLenTensor
from . import config
__all__ = [
'SparseGroupNorm',
'SparseLayerNorm',
'SparseGroupNorm32',
'SparseLayerNorm32',
]
class SparseGroupNorm(nn.GroupNorm):
def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
def forward(self, input: VarLenTensor) -> VarLenTensor:
nfeats = torch.zeros_like(input.feats)
for k in range(input.shape[0]):
bfeats = input.feats[input.layout[k]]
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
bfeats = super().forward(bfeats)
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
nfeats[input.layout[k]] = bfeats
return input.replace(nfeats)
class SparseLayerNorm(nn.LayerNorm):
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)
def forward(self, input: VarLenTensor) -> VarLenTensor:
nfeats = torch.zeros_like(input.feats)
for k in range(input.shape[0]):
bfeats = input.feats[input.layout[k]]
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
bfeats = super().forward(bfeats)
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
nfeats[input.layout[k]] = bfeats
return input.replace(nfeats)
class SparseGroupNorm32(SparseGroupNorm):
"""
A GroupNorm layer that converts to float32 before the forward pass.
"""
def forward(self, x: VarLenTensor) -> VarLenTensor:
x_dtype = x.dtype
x = manual_cast(x, torch.float32)
o = super().forward(x)
return manual_cast(o, x_dtype)
class SparseLayerNorm32(SparseLayerNorm):
"""
A LayerNorm layer that converts to float32 before the forward pass.
"""
def forward(self, x: VarLenTensor) -> VarLenTensor:
x_dtype = x.dtype
x = manual_cast(x, torch.float32)
o = super().forward(x)
return manual_cast(o, x_dtype)