Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from ..utils import manual_cast | |
| from . import VarLenTensor | |
| from . import config | |
| __all__ = [ | |
| 'SparseGroupNorm', | |
| 'SparseLayerNorm', | |
| 'SparseGroupNorm32', | |
| 'SparseLayerNorm32', | |
| ] | |
| class SparseGroupNorm(nn.GroupNorm): | |
| def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): | |
| super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine) | |
| def forward(self, input: VarLenTensor) -> VarLenTensor: | |
| nfeats = torch.zeros_like(input.feats) | |
| for k in range(input.shape[0]): | |
| bfeats = input.feats[input.layout[k]] | |
| bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) | |
| bfeats = super().forward(bfeats) | |
| bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) | |
| nfeats[input.layout[k]] = bfeats | |
| return input.replace(nfeats) | |
| class SparseLayerNorm(nn.LayerNorm): | |
| def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): | |
| super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine) | |
| def forward(self, input: VarLenTensor) -> VarLenTensor: | |
| nfeats = torch.zeros_like(input.feats) | |
| for k in range(input.shape[0]): | |
| bfeats = input.feats[input.layout[k]] | |
| bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) | |
| bfeats = super().forward(bfeats) | |
| bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) | |
| nfeats[input.layout[k]] = bfeats | |
| return input.replace(nfeats) | |
| class SparseGroupNorm32(SparseGroupNorm): | |
| """ | |
| A GroupNorm layer that converts to float32 before the forward pass. | |
| """ | |
| def forward(self, x: VarLenTensor) -> VarLenTensor: | |
| x_dtype = x.dtype | |
| x = manual_cast(x, torch.float32) | |
| o = super().forward(x) | |
| return manual_cast(o, x_dtype) | |
| class SparseLayerNorm32(SparseLayerNorm): | |
| """ | |
| A LayerNorm layer that converts to float32 before the forward pass. | |
| """ | |
| def forward(self, x: VarLenTensor) -> VarLenTensor: | |
| x_dtype = x.dtype | |
| x = manual_cast(x, torch.float32) | |
| o = super().forward(x) | |
| return manual_cast(o, x_dtype) | |