File size: 16,437 Bytes
bf35729
 
 
 
 
 
d45c1d3
 
 
 
 
 
 
 
 
 
ed302b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45c1d3
96b3514
d45c1d3
 
ed302b6
d45c1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed302b6
d45c1d3
 
 
 
 
 
 
 
ed302b6
d45c1d3
 
 
 
 
 
 
 
ed302b6
d45c1d3
 
 
 
 
 
 
 
ed302b6
d45c1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed302b6
96b3514
bf35729
 
ed302b6
bf35729
 
d45c1d3
bf35729
d45c1d3
bf35729
d45c1d3
 
 
 
 
 
bf35729
 
d45c1d3
 
 
 
 
bf35729
d45c1d3
 
bf35729
d45c1d3
bf35729
d45c1d3
bf35729
 
 
 
 
 
ed302b6
bf35729
 
 
 
 
 
 
 
 
 
 
 
ed302b6
bf35729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed302b6
bf35729
d45c1d3
 
bf35729
d45c1d3
 
 
bf35729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0093d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
from typing import Dict, List, Tuple
import pytz
import time
import random
import threading
from dataclasses import dataclass

# Import configurations
from config import IDX_STOCKS, IDX_MARKET_CONFIG 


# --- Market Status Manager ---

@dataclass
class MarketStatus:
    """Data class to hold market status information"""
    is_open: bool
    status_text: str
    next_trading_day: str
    last_updated: str
    time_until_open: str
    time_until_close: str
    current_time_et: str
    market_name: str
    market_type: str
    market_symbol: str

# Global configuration for market status updates
MARKET_STATUS_UPDATE_INTERVAL_MINUTES = 10  # Update every 10 minutes

class MarketStatusManager:
    """Manages market status with periodic updates for the IDX market"""
    
    def __init__(self):
        self.update_interval = MARKET_STATUS_UPDATE_INTERVAL_MINUTES * 60  # Convert to seconds
        self._statuses = {}
        self._lock = threading.Lock()
        self._stop_event = threading.Event()
        self._update_thread = None
        self._start_update_thread()
    
    def _get_current_market_status(self, market_key: str = 'IDX_STOCKS') -> MarketStatus:
        """Get current market status with detailed information for specific market"""
        config = IDX_MARKET_CONFIG[market_key]
        now = datetime.now(pytz.timezone('Asia/Jakarta')) # Use timezone-aware datetime for IDX
        
        market_tz = pytz.timezone(config['timezone'])
        market_time = now.astimezone(market_tz)
        
        open_hour, open_minute = map(int, config['open_time'].split(':'))
        close_hour, close_minute = map(int, config['close_time'].split(':'))
        
        market_open_time = market_time.replace(hour=open_hour, minute=open_minute, second=0, microsecond=0)
        market_close_time = market_time.replace(hour=close_hour, minute=close_minute, second=0, microsecond=0)
        
        is_trading_day = market_time.weekday() in config['days']
        
        if not is_trading_day:
            is_open = False
            status_text = f"{config['name']} is closed (Weekend)"
        elif market_open_time <= market_time <= market_close_time:
            is_open = True
            status_text = f"{config['name']} is currently open"
        else:
            is_open = False
            if market_time < market_open_time:
                status_text = f"{config['name']} is closed (Before opening)"
            else:
                status_text = f"{config['name']} is closed (After closing)"
        
        next_trading_day = self._get_next_trading_day(market_time, config['days'])
        time_until_open = self._get_time_until_open(market_time, market_open_time, config)
        time_until_close = self._get_time_until_close(market_time, market_close_time, config)
        
        return MarketStatus(
            is_open=is_open,
            status_text=status_text,
            next_trading_day=next_trading_day.strftime('%Y-%m-%d'),
            last_updated=market_time.strftime('%Y-%m-%d %H:%M:%S %Z'),
            time_until_open=time_until_open,
            time_until_close=time_until_close,
            current_time_et=market_time.strftime('%H:%M:%S %Z'),
            market_name=config['name'],
            market_type=config['type'],
            market_symbol=config['symbol']
        )
    
    def _get_next_trading_day(self, current_time: datetime, trading_days: list) -> datetime:
        """Get the next trading day for a specific market"""
        next_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1)
        
        while next_day.weekday() not in trading_days:
            next_day += timedelta(days=1)
        
        return next_day
    
    def _get_time_until_open(self, current_time: datetime, market_open_time: datetime, config: dict) -> str:
        """Calculate time until market opens"""
        if current_time.weekday() not in config['days']:
            days_until_next = 1
            while (current_time + timedelta(days=days_until_next)).weekday() not in config['days']:
                days_until_next += 1
            
            next_trading_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=days_until_next)
            next_open = next_trading_day.replace(
                hour=int(config['open_time'].split(':')[0]),
                minute=int(config['open_time'].split(':')[1]),
                second=0, microsecond=0
            )
            time_diff = next_open - current_time
        else:
            if current_time < market_open_time:
                time_diff = market_open_time - current_time
            else:
                days_until_next = 1
                while (current_time + timedelta(days=days_until_next)).weekday() not in config['days']:
                    days_until_next += 1
                
                next_trading_day = current_time.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=days_until_next)
                next_open = next_trading_day.replace(
                    hour=int(config['open_time'].split(':')[0]),
                    minute=int(config['open_time'].split(':')[1]),
                    second=0, microsecond=0
                )
                time_diff = next_open - current_time
        
        return self._format_time_delta(time_diff)
    
    def _get_time_until_close(self, current_time: datetime, market_close_time: datetime, config: dict) -> str:
        """Calculate time until market closes"""
        if current_time.weekday() not in config['days']:
            return "N/A (Weekend)"
        
        if current_time < market_close_time:
            time_diff = market_close_time - current_time
            return self._format_time_delta(time_diff)
        else:
            return "Market closed for today"
    
    def _format_time_delta(self, time_diff: timedelta) -> str:
        """Format timedelta into human-readable string"""
        total_seconds = int(time_diff.total_seconds())
        if total_seconds < 0:
            return "N/A"
        
        days = total_seconds // 86400
        hours = (total_seconds % 86400) // 3600
        minutes = (total_seconds % 3600) // 60
        
        if days > 0:
            return f"{days}d {hours}h {minutes}m"
        elif hours > 0:
            return f"{hours}h {minutes}m"
        else:
            return f"{minutes}m"
    
    def _update_loop(self):
        """Background thread loop for updating market status"""
        while not self._stop_event.is_set():
            try:
                new_statuses = {}
                market_key = 'IDX_STOCKS'
                new_statuses[market_key] = self._get_current_market_status(market_key)
                
                with self._lock:
                    self._statuses = new_statuses
                time.sleep(self.update_interval)
            except Exception as e:
                print(f"Error updating market status: {str(e)}")
                time.sleep(60)
    
    def _start_update_thread(self):
        """Start the background update thread"""
        if self._update_thread is None or not self._update_thread.is_alive():
            self._stop_event.clear()
            self._update_thread = threading.Thread(target=self._update_loop, daemon=True)
            self._update_thread.start()
    
    def get_status(self, market_key: str = 'IDX_STOCKS') -> MarketStatus:
        """Get current market status (thread-safe)"""
        with self._lock:
            if market_key not in self._statuses:
                self._statuses[market_key] = self._get_current_market_status(market_key)
            return self._statuses[market_key]
    
    def stop(self):
        """Stop the update thread"""
        self._stop_event.set()
        if self._update_thread and self._update_thread.is_alive():
            self._update_thread.join(timeout=5)

# --- LAZY INITIALIZATION FIX ---
_market_status_manager_instance = None

def get_market_manager():
    """Returns the singleton MarketStatusManager instance, initializing it if necessary."""
    global _market_status_manager_instance
    if _market_status_manager_instance is None:
        _market_status_manager_instance = MarketStatusManager()
    return _market_status_manager_instance

# Hapus baris lama: market_status_manager = MarketStatusManager()
# --- LAZY INITIALIZATION FIX ---


# --- Utility Functions (Modified) ---

def retry_yfinance_request(func, max_retries=3, initial_delay=1):
    # ... (SAMA) ...
    for attempt in range(max_retries):
        try:
            result = func()
            if result is None or (isinstance(result, pd.DataFrame) and result.empty):
                if attempt == max_retries - 1:
                    print(f"Function returned empty/None after {max_retries} attempts")
                return None
            return result
        except Exception as e:
            if attempt == max_retries - 1:
                print(f"Final attempt failed after {max_retries} retries: {str(e)}")
                return None
            
            delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1))
            print(f"Error (attempt {attempt + 1}/{max_retries}), retrying in {delay:.2f}s: {str(e)}")
            time.sleep(delay)
    return None

def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
    # ... (SAMA) ...
    prices = prices.ffill().bfill()
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
    # ... (SAMA) ...
    prices = prices.ffill().bfill()
    exp1 = prices.ewm(span=fast, adjust=False).mean()
    exp2 = prices.ewm(span=slow, adjust=False).mean()
    macd = exp1 - exp2
    signal_line = macd.ewm(span=signal, adjust=False).mean()
    return macd, signal_line

def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
    # ... (SAMA) ...
    prices = prices.ffill().bfill()
    middle_band = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper_band = middle_band + (std * std_dev)
    lower_band = middle_band - (std * std_dev)
    return upper_band, middle_band, lower_band

def calculate_technical_indicators(df: pd.DataFrame) -> pd.DataFrame:
    # ... (SAMA) ...
    try:
        # Calculate moving averages
        df['SMA_20'] = df['Close'].rolling(window=20, min_periods=1).mean()
        df['SMA_50'] = df['Close'].rolling(window=50, min_periods=1).mean()
        df['SMA_200'] = df['Close'].rolling(window=200, min_periods=1).mean()
        
        # Calculate RSI
        df['RSI'] = calculate_rsi(df['Close'])
        
        # Calculate MACD
        df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
        
        # Calculate Bollinger Bands
        df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
        
        # Calculate returns and volatility
        df['Returns'] = df['Close'].pct_change()
        df['Volatility'] = df['Returns'].rolling(window=20).std()
        
        # Fill any remaining NaN values
        df = df.fillna(method='ffill').fillna(method='bfill')
        
        return df
        
    except Exception as e:
        print(f"Error calculating technical indicators: {str(e)}")
        return df


# --- Existing Utility Functions (Modified) ---

# Hapus fungsi get_idx_stocks

def fetch_stock_data(symbol, period_days):
    # ... (SAMA) ...
    try:
        end_date = datetime.now()
        start_date = end_date - timedelta(days=period_days + 30)
        
        ticker = yf.Ticker(symbol)
        
        def fetch_history():
            return ticker.history(start=start_date, end=end_date, interval="1d")
        
        data = retry_yfinance_request(fetch_history)
        
        if data is None or data.empty:
            return None
        
        # Apply technical indicators and cleanup
        data = calculate_technical_indicators(data)

        # Filter for the exact number of days requested (trading days)
        data = data.tail(period_days)
        
        if data.empty:
             return None
        
        data.index = pd.to_datetime(data.index)
        
        return data
        
    except Exception as e:
        print(f"Error fetching data for {symbol}: {e}")
        return None

def prepare_timesfm_data(stock_data, use_volume=False):
    # ... (SAMA) ...
    data = stock_data['Close'].copy()
    
    data = data.fillna(method='ffill').fillna(method='bfill')
    
    # Chronos needs 1D numpy array of raw data
    timeseries_data = data.values.flatten()
    
    # We no longer use a separate scaler
    return timeseries_data, None


def create_forecast_plot(historical_data, forecast_dates, forecast_prices, symbol):
    # ... (SAMA) ...
    fig = make_subplots(
        rows=2, cols=1,
        shared_xaxes=True,
        vertical_spacing=0.05,
        subplot_titles=(f'{symbol} Stock Price Forecast', 'Volume'),
        row_width=[0.2, 0.7]
    )
    
    # Historical closing prices
    fig.add_trace(
        go.Scatter(
            x=historical_data.index,
            y=historical_data['Close'],
            mode='lines',
            name='Historical Price',
            line=dict(color='blue', width=2)
        ),
        row=1, col=1
    )
    
    # Forecast prices
    fig.add_trace(
        go.Scatter(
            x=forecast_dates,
            y=forecast_prices,
            mode='lines',
            name='Forecast',
            line=dict(color='red', width=2, dash='dash')
        ),
        row=1, col=1
    )
    
    # Confidence interval (simple approach)
    std_dev = np.std(historical_data['Close'].values) * 0.1
    upper_bound = forecast_prices + std_dev
    lower_bound = forecast_prices - std_dev
    
    fig.add_trace(
        go.Scatter(
            x=forecast_dates,
            y=upper_bound,
            mode='lines',
            line=dict(width=0),
            showlegend=False,
            hoverinfo='skip'
        ),
        row=1, col=1
    )
    
    fig.add_trace(
        go.Scatter(
            x=forecast_dates,
            y=lower_bound,
            mode='lines',
            line=dict(width=0),
            fill='tonexty',
            fillcolor='rgba(255,0,0,0.2)',
            name='Confidence Interval',
            hoverinfo='skip'
        ),
        row=1, col=1
    )
    
    # Volume
    fig.add_trace(
        go.Bar(
            x=historical_data.index,
            y=historical_data['Volume'],
            name='Volume',
            marker_color='lightblue',
            yaxis='y2'
        ),
        row=2, col=1
    )
    
    # Update layout
    fig.update_layout(
        title=f'{symbol} Stock Price Prediction',
        xaxis_title='Date',
        yaxis_title='Price (IDR)',
        yaxis2_title='Volume',
        hovermode='x unified',
        showlegend=True,
        height=600
    )
    
    fig.update_yaxes(title_text="Price (IDR)", row=1, col=1)
    fig.update_yaxes(title_text="Volume", row=2, col=1)
    fig.update_xaxes(title_text="Date", row=2, col=1)
    
    return fig

def get_stock_info(symbol):
    # ... (SAMA) ...
    try:
        ticker = yf.Ticker(symbol)
        info = retry_yfinance_request(lambda: ticker.info)
        
        if info is None:
            return {}
            
        # Format market cap
        market_cap = info.get('marketCap', 0)
        if market_cap:
            if market_cap >= 1e12:
                market_cap_str = f"Rp {market_cap/1e12:.2f}T"
            elif market_cap >= 1e9:
                market_cap_str = f"Rp {market_cap/1e9:.2f}B"
            elif market_cap >= 1e6:
                market_cap_str = f"Rp {market_cap/1e6:.2f}M"
            else:
                market_cap_str = f"Rp {market_cap:,.0f}"
            info['marketCap'] = market_cap_str
        
        return info
    except Exception as e:
        print(f"Error getting stock info: {e}")
        return {}