Galician - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Galician Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.858x 3.86 0.0578% 2,440,248
16k 4.272x 4.27 0.0640% 2,203,809
32k 4.611x 4.61 0.0691% 2,041,816
64k 4.855x πŸ† 4.86 0.0728% 1,939,285

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: GalerΓ­a de imaxes do rΓ­o Lima, en Portugal. VΓ©xase tamΓ©n de imaxes de Galicia

Vocab Tokens Count
8k ▁galerΓ­a ▁de ▁imaxes ▁do ▁rΓ­o ▁li ma , ▁en ▁portugal ... (+7 more) 17
16k ▁galerΓ­a ▁de ▁imaxes ▁do ▁rΓ­o ▁lima , ▁en ▁portugal . ... (+6 more) 16
32k ▁galerΓ­a ▁de ▁imaxes ▁do ▁rΓ­o ▁lima , ▁en ▁portugal . ... (+6 more) 16
64k ▁galerΓ­a ▁de ▁imaxes ▁do ▁rΓ­o ▁lima , ▁en ▁portugal . ... (+6 more) 16

Sample 2: Como topΓ³nimo Gurgueiro pode referirse a: En Galiza Gurgueiro, parroquia do conc...

Vocab Tokens Count
8k ▁como ▁topΓ³nimo ▁g ur gueiro ▁pode ▁referirse ▁a : ▁en ... (+22 more) 32
16k ▁como ▁topΓ³nimo ▁gur gueiro ▁pode ▁referirse ▁a : ▁en ▁galiza ... (+17 more) 27
32k ▁como ▁topΓ³nimo ▁gur gueiro ▁pode ▁referirse ▁a : ▁en ▁galiza ... (+17 more) 27
64k ▁como ▁topΓ³nimo ▁gur gueiro ▁pode ▁referirse ▁a : ▁en ▁galiza ... (+17 more) 27

Sample 3: Acontecementos Os escitas fanse co poder en Media (atΓ© -625). Nacementos Mortes ...

Vocab Tokens Count
8k ▁acontecementos ▁os ▁es ci tas ▁f anse ▁co ▁poder ▁en ... (+32 more) 42
16k ▁acontecementos ▁os ▁es ci tas ▁f anse ▁co ▁poder ▁en ... (+30 more) 40
32k ▁acontecementos ▁os ▁esci tas ▁fanse ▁co ▁poder ▁en ▁media ▁( ... (+28 more) 38
64k ▁acontecementos ▁os ▁escitas ▁fanse ▁co ▁poder ▁en ▁media ▁( atΓ© ... (+27 more) 37

Key Findings

  • Best Compression: 64k achieves 4.855x compression
  • Lowest UNK Rate: 8k with 0.0578% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 177,694 17.44 1,599,435 7.3% 19.3%
2-gram Subword 245 πŸ† 7.94 20,270 70.9% 99.1%
3-gram Word 807,045 19.62 3,552,102 4.3% 10.2%
3-gram Subword 2,104 11.04 147,394 28.3% 74.1%
4-gram Word 1,759,879 20.75 5,677,444 3.4% 7.5%
4-gram Subword 12,759 13.64 835,381 12.6% 40.0%
5-gram Word 1,252,252 20.26 3,696,764 3.5% 8.1%
5-gram Subword 56,114 15.78 2,862,824 6.8% 23.0%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 a sΓΊa 166,299
2 vΓ©xase tamΓ©n 147,020
3 e a 141,357
4 que se 140,843
5 o seu 139,408

3-grams (Word):

Rank N-gram Count
1 notas vΓ©xase tamΓ©n 95,486
2 lugar da parroquia 82,962
3 da parroquia de 77,119
4 vΓ©xase tamΓ©n outros 57,984
5 tamΓ©n outros artigos 57,948

4-grams (Word):

Rank N-gram Count
1 lugar da parroquia de 74,902
2 vΓ©xase tamΓ©n outros artigos 57,933
3 vΓ©xase tamΓ©n ligazΓ³ns externas 46,507
4 lugares e parroquias lugares 41,059
5 notas vΓ©xase tamΓ©n outros 37,978

5-grams (Word):

Rank N-gram Count
1 notas vΓ©xase tamΓ©n outros artigos 37,947
2 Γ© un lugar da parroquia 36,571
3 lugares e parroquias lugares de 36,422
4 un lugar da parroquia de 32,976
5 notas vΓ©xase tamΓ©n ligazΓ³ns externas 27,554

2-grams (Subword):

Rank N-gram Count
1 e _ 15,175,729
2 a _ 14,798,960
3 o _ 13,352,930
4 _ d 12,106,131
5 s _ 11,921,693

3-grams (Subword):

Rank N-gram Count
1 _ d e 6,968,387
2 d e _ 6,412,643
3 o s _ 4,111,887
4 _ c o 3,620,668
5 a s _ 3,409,570

4-grams (Subword):

Rank N-gram Count
1 _ d e _ 5,450,285
2 _ e n _ 1,570,834
3 c i Γ³ n 1,543,944
4 o _ d e 1,530,833
5 _ q u e 1,455,346

5-grams (Subword):

Rank N-gram Count
1 _ q u e _ 1,344,486
2 o _ d e _ 1,307,199
3 s _ d e _ 1,120,819
4 c i Γ³ n _ 1,079,093
5 a _ d e _ 1,051,617

Key Findings

  • Best Perplexity: 2-gram (subword) with 245
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~23% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 1.0271 2.038 12.90 1,350,064 0.0%
1 Subword 1.1629 2.239 7.96 10,661 0.0%
2 Word 0.4319 1.349 2.66 17,398,522 56.8%
2 Subword 0.6671 1.588 4.32 84,803 33.3%
3 Word 0.1909 1.142 1.44 46,200,692 80.9%
3 Subword 0.6991 1.624 4.08 366,443 30.1%
4 Word 0.0765 πŸ† 1.054 1.14 66,305,200 92.4%
4 Subword 0.6839 1.606 3.51 1,494,151 31.6%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. de outubro josΓ© manuel fernΓ‘ndez novoa mΓ©dico e impulsou a altura inerme ante o en polo
  2. a mellor de sabedoría pervivindo algúns atribúenlle a proa cafè món e coli estas características ori...
  3. e a cal serΓ‘ desmontado en hΓ‘bitats de vanuatu nacionais e os tempos rexistrados participaciΓ³n a

Context Size 2:

  1. a sΓΊa orixe no mercado invernal o manchester united fc do racing club de ferrol onde antigamente
  2. vΓ©xase tamΓ©n outros artigos dΓ³lar internacional Γ© unha substancia derivada da norma xurΓ­dica ditada ...
  3. e a segunda guerra mundial voou por primeira vez a vida dedicΓ‘ndose a promover abertamente a bandeir...

Context Size 3:

  1. notas vΓ©xase tamΓ©n bibliografΓ­a bradbury mark becoming somaliland james currey isbn michael schoiswo...
  2. lugar da parroquia de nantΓ³n no concello de fisterra san paio de carreira monte da cidΓ‘ Γ© un
  3. da parroquia de augas santas no concello de lugo san amaro lugar da parroquia de cobres no concello

Context Size 4:

  1. lugar da parroquia de san pedro de antealtares da mesma cidade compostela dise que compuxo esta pΓ­a ...
  2. vΓ©xase tamΓ©n outros artigos lugares de nigrΓ‘n de nigrΓ‘n de fΓΊtbol do cd lalΓ­n do algeciras cf do ad
  3. vΓ©xase tamΓ©n ligazΓ³ns externas de en lingua francesa de francia da arte do alemΓ‘n ao francΓ©s da univ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _gon_axianto_fab
  2. abre_po_douraba_
  3. elΓ‘_s_121_dola_d

Context Size 2:

  1. e_pertide_recaciΓ³
  2. a_mΓ‘n,_e_acipobro
  3. o_cruque_seta._e_

Context Size 3:

  1. _de_direculta_desc
  2. de_libra_sΓΊa_idena
  3. os_aneirashi,_unha

Context Size 4:

  1. _de_marticide_on_d.
  2. _en_funciosos_rΓ­xid
  3. ciΓ³n_regreira_da_ac

Key Findings

  • Best Predictability: Context-4 (word) with 92.4% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,494,151 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 625,330
Total Tokens 87,603,878
Mean Frequency 140.09
Median Frequency 4
Frequency Std Dev 9798.07

Most Common Words

Rank Word Frequency
1 de 5,468,609
2 a 2,599,768
3 e 2,303,284
4 o 2,069,024
5 en 1,636,097
6 que 1,373,339
7 do 1,309,653
8 da 1,272,492
9 no 696,789
10 un 677,110

Least Common Words (from vocabulary)

Rank Word Frequency
1 nodulisporium 2
2 sylviforme 2
3 cladosporioides 2
4 ccnsc 2
5 bessels 2
6 espertina 2
7 esperpenta 2
8 faΓ―ence 2
9 malecoloxΓ­a 2
10 clappi 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0034
RΒ² (Goodness of Fit) 0.997371
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 39.7%
Top 1,000 60.3%
Top 5,000 76.2%
Top 10,000 82.6%

Key Findings

  • Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 39.7% of corpus
  • Long Tail: 615,330 words needed for remaining 17.4% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8055 0.3709 N/A N/A
mono_64d 64 0.7807 0.2987 N/A N/A
mono_128d 128 0.7103 0.2440 N/A N/A
aligned_32d 32 0.8055 πŸ† 0.3769 0.4140 0.7540
aligned_64d 64 0.7807 0.2912 0.5720 0.8760
aligned_128d 128 0.7103 0.2400 0.7240 0.9400

Key Findings

  • Best Isotropy: aligned_32d with 0.8055 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3036. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 72.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.648 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-a avalΓ­en, ardre, autocompracencia
-s subxΓ©neros, saybrook, societys
-ma marcharΓ­an, mandiargues, malenkov
-c comΓΊ, citizens, celestron
-m muΓ±ozdianteira, monoamino, meszaros
-p papovaviridae, prΓ³vaΓ­, phani
-t taragaza, trenque, top
-b bharani, battuto, baninter

Productive Suffixes

Suffix Examples
-s subxΓ©neros, illiers, citizens
-a kottila, 5ha, muΓ±ozdianteira
-e violone, fable, papovaviridae
-o firmamento, everxetismo, battuto
-os subxΓ©neros, sΓ‘ibaos, avetouros
-n avalΓ­en, celestron, jamin
-as xeodas, criovolcΓ‘nicas, kangas
-es lifesciences, exemplares, remontadores

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
icas 1.91x 173 contexts icase, micas, icasa
aciΓ³ 1.77x 148 contexts aciΓ³n, naciΓ³, laciΓ³
emen 1.59x 249 contexts jemen, emene, iemen
ntos 1.72x 87 contexts untos, Γ³ntos, antos
atur 1.49x 156 contexts datur, ature, satur
orma 1.34x 257 contexts torma, ormal, porma
oqui 1.75x 64 contexts toqui, coqui, noqui
ncia 1.45x 152 contexts Ε«ncia, uncia, encia
naci 1.62x 84 contexts nacif, nacin, nacio
ific 1.33x 192 contexts ifici, ificar, unifica
cciΓ³ 1.70x 55 contexts acciΓ³, lecciΓ³, acciΓ³n
roqu 1.62x 67 contexts roquΓ©, roque, croque

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-c -s 203 words craniais, codiciadas
-a -s 175 words angers, aeroplanos
-p -s 144 words predis, pags
-a -a 122 words adenda, avicennia
-p -a 121 words penichaira, paralaia
-c -a 117 words cabreiresa, camisasca
-c -o 105 words canonΓ­zao, cΓ³rnico
-e -s 105 words escravos, eppes
-s -s 104 words solsticiais, solicitamos
-c -e 101 words citΓ‘ndose, creedence

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
unbekannt unbekan-n-t 7.5 n
gestalten gestal-te-n 7.5 te
acanthium acanth-i-um 7.5 i
matjhabeng matjhab-e-ng 7.5 e
manufactΓΊraa manufactΓΊr-a-a 7.5 a
bibliorum biblio-r-um 7.5 r
andersens ander-se-ns 7.5 se
contrataran contrata-ra-n 7.5 ra
anacharsis anachar-s-is 7.5 s
aavasaksa aavasak-s-a 7.5 s
endorfinas endorfi-n-as 7.5 n
cuestiΓ³nanse cuestiΓ³n-an-se 7.5 an
albacetenses albaceten-s-es 7.5 s
toplumsal toplum-s-al 7.5 s
synaxarium synaxar-i-um 7.5 i

6.6 Linguistic Interpretation

Automated Insight: The language Galician shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.85x)
N-gram 2-gram Lowest perplexity (245)
Markov Context-4 Highest predictability (92.4%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-13 08:28:57

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/gl