Galician - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Galician Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.858x | 3.86 | 0.0578% | 2,440,248 |
| 16k | 4.272x | 4.27 | 0.0640% | 2,203,809 |
| 32k | 4.611x | 4.61 | 0.0691% | 2,041,816 |
| 64k | 4.855x π | 4.86 | 0.0728% | 1,939,285 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: GalerΓa de imaxes do rΓo Lima, en Portugal. VΓ©xase tamΓ©n de imaxes de Galicia
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βgalerΓa βde βimaxes βdo βrΓo βli ma , βen βportugal ... (+7 more) |
17 |
| 16k | βgalerΓa βde βimaxes βdo βrΓo βlima , βen βportugal . ... (+6 more) |
16 |
| 32k | βgalerΓa βde βimaxes βdo βrΓo βlima , βen βportugal . ... (+6 more) |
16 |
| 64k | βgalerΓa βde βimaxes βdo βrΓo βlima , βen βportugal . ... (+6 more) |
16 |
Sample 2: Como topΓ³nimo Gurgueiro pode referirse a: En Galiza Gurgueiro, parroquia do conc...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βcomo βtopΓ³nimo βg ur gueiro βpode βreferirse βa : βen ... (+22 more) |
32 |
| 16k | βcomo βtopΓ³nimo βgur gueiro βpode βreferirse βa : βen βgaliza ... (+17 more) |
27 |
| 32k | βcomo βtopΓ³nimo βgur gueiro βpode βreferirse βa : βen βgaliza ... (+17 more) |
27 |
| 64k | βcomo βtopΓ³nimo βgur gueiro βpode βreferirse βa : βen βgaliza ... (+17 more) |
27 |
Sample 3: Acontecementos Os escitas fanse co poder en Media (atΓ© -625). Nacementos Mortes ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βacontecementos βos βes ci tas βf anse βco βpoder βen ... (+32 more) |
42 |
| 16k | βacontecementos βos βes ci tas βf anse βco βpoder βen ... (+30 more) |
40 |
| 32k | βacontecementos βos βesci tas βfanse βco βpoder βen βmedia β( ... (+28 more) |
38 |
| 64k | βacontecementos βos βescitas βfanse βco βpoder βen βmedia β( atΓ© ... (+27 more) |
37 |
Key Findings
- Best Compression: 64k achieves 4.855x compression
- Lowest UNK Rate: 8k with 0.0578% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 177,694 | 17.44 | 1,599,435 | 7.3% | 19.3% |
| 2-gram | Subword | 245 π | 7.94 | 20,270 | 70.9% | 99.1% |
| 3-gram | Word | 807,045 | 19.62 | 3,552,102 | 4.3% | 10.2% |
| 3-gram | Subword | 2,104 | 11.04 | 147,394 | 28.3% | 74.1% |
| 4-gram | Word | 1,759,879 | 20.75 | 5,677,444 | 3.4% | 7.5% |
| 4-gram | Subword | 12,759 | 13.64 | 835,381 | 12.6% | 40.0% |
| 5-gram | Word | 1,252,252 | 20.26 | 3,696,764 | 3.5% | 8.1% |
| 5-gram | Subword | 56,114 | 15.78 | 2,862,824 | 6.8% | 23.0% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a sΓΊa |
166,299 |
| 2 | vΓ©xase tamΓ©n |
147,020 |
| 3 | e a |
141,357 |
| 4 | que se |
140,843 |
| 5 | o seu |
139,408 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | notas vΓ©xase tamΓ©n |
95,486 |
| 2 | lugar da parroquia |
82,962 |
| 3 | da parroquia de |
77,119 |
| 4 | vΓ©xase tamΓ©n outros |
57,984 |
| 5 | tamΓ©n outros artigos |
57,948 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | lugar da parroquia de |
74,902 |
| 2 | vΓ©xase tamΓ©n outros artigos |
57,933 |
| 3 | vΓ©xase tamΓ©n ligazΓ³ns externas |
46,507 |
| 4 | lugares e parroquias lugares |
41,059 |
| 5 | notas vΓ©xase tamΓ©n outros |
37,978 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | notas vΓ©xase tamΓ©n outros artigos |
37,947 |
| 2 | Γ© un lugar da parroquia |
36,571 |
| 3 | lugares e parroquias lugares de |
36,422 |
| 4 | un lugar da parroquia de |
32,976 |
| 5 | notas vΓ©xase tamΓ©n ligazΓ³ns externas |
27,554 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | e _ |
15,175,729 |
| 2 | a _ |
14,798,960 |
| 3 | o _ |
13,352,930 |
| 4 | _ d |
12,106,131 |
| 5 | s _ |
11,921,693 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e |
6,968,387 |
| 2 | d e _ |
6,412,643 |
| 3 | o s _ |
4,111,887 |
| 4 | _ c o |
3,620,668 |
| 5 | a s _ |
3,409,570 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e _ |
5,450,285 |
| 2 | _ e n _ |
1,570,834 |
| 3 | c i Γ³ n |
1,543,944 |
| 4 | o _ d e |
1,530,833 |
| 5 | _ q u e |
1,455,346 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ q u e _ |
1,344,486 |
| 2 | o _ d e _ |
1,307,199 |
| 3 | s _ d e _ |
1,120,819 |
| 4 | c i Γ³ n _ |
1,079,093 |
| 5 | a _ d e _ |
1,051,617 |
Key Findings
- Best Perplexity: 2-gram (subword) with 245
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~23% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0271 | 2.038 | 12.90 | 1,350,064 | 0.0% |
| 1 | Subword | 1.1629 | 2.239 | 7.96 | 10,661 | 0.0% |
| 2 | Word | 0.4319 | 1.349 | 2.66 | 17,398,522 | 56.8% |
| 2 | Subword | 0.6671 | 1.588 | 4.32 | 84,803 | 33.3% |
| 3 | Word | 0.1909 | 1.142 | 1.44 | 46,200,692 | 80.9% |
| 3 | Subword | 0.6991 | 1.624 | 4.08 | 366,443 | 30.1% |
| 4 | Word | 0.0765 π | 1.054 | 1.14 | 66,305,200 | 92.4% |
| 4 | Subword | 0.6839 | 1.606 | 3.51 | 1,494,151 | 31.6% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
de outubro josΓ© manuel fernΓ‘ndez novoa mΓ©dico e impulsou a altura inerme ante o en poloa mellor de sabedorΓa pervivindo algΓΊns atribΓΊenlle a proa cafΓ¨ mΓ³n e coli estas caracterΓsticas ori...e a cal serΓ‘ desmontado en hΓ‘bitats de vanuatu nacionais e os tempos rexistrados participaciΓ³n a
Context Size 2:
a sΓΊa orixe no mercado invernal o manchester united fc do racing club de ferrol onde antigamentevΓ©xase tamΓ©n outros artigos dΓ³lar internacional Γ© unha substancia derivada da norma xurΓdica ditada ...e a segunda guerra mundial voou por primeira vez a vida dedicΓ‘ndose a promover abertamente a bandeir...
Context Size 3:
notas vΓ©xase tamΓ©n bibliografΓa bradbury mark becoming somaliland james currey isbn michael schoiswo...lugar da parroquia de nantΓ³n no concello de fisterra san paio de carreira monte da cidΓ‘ Γ© unda parroquia de augas santas no concello de lugo san amaro lugar da parroquia de cobres no concello
Context Size 4:
lugar da parroquia de san pedro de antealtares da mesma cidade compostela dise que compuxo esta pΓa ...vΓ©xase tamΓ©n outros artigos lugares de nigrΓ‘n de nigrΓ‘n de fΓΊtbol do cd lalΓn do algeciras cf do advΓ©xase tamΓ©n ligazΓ³ns externas de en lingua francesa de francia da arte do alemΓ‘n ao francΓ©s da univ...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_gon_axianto_fababre_po_douraba_elΓ‘_s_121_dola_d
Context Size 2:
e_pertide_recaciΓ³a_mΓ‘n,_e_acipobroo_cruque_seta._e_
Context Size 3:
_de_direculta_descde_libra_sΓΊa_idenaos_aneirashi,_unha
Context Size 4:
_de_marticide_on_d._en_funciosos_rΓxidciΓ³n_regreira_da_ac
Key Findings
- Best Predictability: Context-4 (word) with 92.4% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,494,151 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 625,330 |
| Total Tokens | 87,603,878 |
| Mean Frequency | 140.09 |
| Median Frequency | 4 |
| Frequency Std Dev | 9798.07 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | de | 5,468,609 |
| 2 | a | 2,599,768 |
| 3 | e | 2,303,284 |
| 4 | o | 2,069,024 |
| 5 | en | 1,636,097 |
| 6 | que | 1,373,339 |
| 7 | do | 1,309,653 |
| 8 | da | 1,272,492 |
| 9 | no | 696,789 |
| 10 | un | 677,110 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | nodulisporium | 2 |
| 2 | sylviforme | 2 |
| 3 | cladosporioides | 2 |
| 4 | ccnsc | 2 |
| 5 | bessels | 2 |
| 6 | espertina | 2 |
| 7 | esperpenta | 2 |
| 8 | faΓ―ence | 2 |
| 9 | malecoloxΓa | 2 |
| 10 | clappi | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0034 |
| RΒ² (Goodness of Fit) | 0.997371 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 39.7% |
| Top 1,000 | 60.3% |
| Top 5,000 | 76.2% |
| Top 10,000 | 82.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 39.7% of corpus
- Long Tail: 615,330 words needed for remaining 17.4% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8055 | 0.3709 | N/A | N/A |
| mono_64d | 64 | 0.7807 | 0.2987 | N/A | N/A |
| mono_128d | 128 | 0.7103 | 0.2440 | N/A | N/A |
| aligned_32d | 32 | 0.8055 π | 0.3769 | 0.4140 | 0.7540 |
| aligned_64d | 64 | 0.7807 | 0.2912 | 0.5720 | 0.8760 |
| aligned_128d | 128 | 0.7103 | 0.2400 | 0.7240 | 0.9400 |
Key Findings
- Best Isotropy: aligned_32d with 0.8055 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3036. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 72.4% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.648 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-a |
avalΓen, ardre, autocompracencia |
-s |
subxΓ©neros, saybrook, societys |
-ma |
marcharΓan, mandiargues, malenkov |
-c |
comΓΊ, citizens, celestron |
-m |
muΓ±ozdianteira, monoamino, meszaros |
-p |
papovaviridae, prΓ³vaΓ, phani |
-t |
taragaza, trenque, top |
-b |
bharani, battuto, baninter |
Productive Suffixes
| Suffix | Examples |
|---|---|
-s |
subxΓ©neros, illiers, citizens |
-a |
kottila, 5ha, muΓ±ozdianteira |
-e |
violone, fable, papovaviridae |
-o |
firmamento, everxetismo, battuto |
-os |
subxΓ©neros, sΓ‘ibaos, avetouros |
-n |
avalΓen, celestron, jamin |
-as |
xeodas, criovolcΓ‘nicas, kangas |
-es |
lifesciences, exemplares, remontadores |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
icas |
1.91x | 173 contexts | icase, micas, icasa |
aciΓ³ |
1.77x | 148 contexts | aciΓ³n, naciΓ³, laciΓ³ |
emen |
1.59x | 249 contexts | jemen, emene, iemen |
ntos |
1.72x | 87 contexts | untos, Γ³ntos, antos |
atur |
1.49x | 156 contexts | datur, ature, satur |
orma |
1.34x | 257 contexts | torma, ormal, porma |
oqui |
1.75x | 64 contexts | toqui, coqui, noqui |
ncia |
1.45x | 152 contexts | Ε«ncia, uncia, encia |
naci |
1.62x | 84 contexts | nacif, nacin, nacio |
ific |
1.33x | 192 contexts | ifici, ificar, unifica |
cciΓ³ |
1.70x | 55 contexts | acciΓ³, lecciΓ³, acciΓ³n |
roqu |
1.62x | 67 contexts | roquΓ©, roque, croque |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-c |
-s |
203 words | craniais, codiciadas |
-a |
-s |
175 words | angers, aeroplanos |
-p |
-s |
144 words | predis, pags |
-a |
-a |
122 words | adenda, avicennia |
-p |
-a |
121 words | penichaira, paralaia |
-c |
-a |
117 words | cabreiresa, camisasca |
-c |
-o |
105 words | canonΓzao, cΓ³rnico |
-e |
-s |
105 words | escravos, eppes |
-s |
-s |
104 words | solsticiais, solicitamos |
-c |
-e |
101 words | citΓ‘ndose, creedence |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| unbekannt | unbekan-n-t |
7.5 | n |
| gestalten | gestal-te-n |
7.5 | te |
| acanthium | acanth-i-um |
7.5 | i |
| matjhabeng | matjhab-e-ng |
7.5 | e |
| manufactΓΊraa | manufactΓΊr-a-a |
7.5 | a |
| bibliorum | biblio-r-um |
7.5 | r |
| andersens | ander-se-ns |
7.5 | se |
| contrataran | contrata-ra-n |
7.5 | ra |
| anacharsis | anachar-s-is |
7.5 | s |
| aavasaksa | aavasak-s-a |
7.5 | s |
| endorfinas | endorfi-n-as |
7.5 | n |
| cuestiΓ³nanse | cuestiΓ³n-an-se |
7.5 | an |
| albacetenses | albaceten-s-es |
7.5 | s |
| toplumsal | toplum-s-al |
7.5 | s |
| synaxarium | synaxar-i-um |
7.5 | i |
6.6 Linguistic Interpretation
Automated Insight: The language Galician shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.85x) |
| N-gram | 2-gram | Lowest perplexity (245) |
| Markov | Context-4 | Highest predictability (92.4%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-13 08:28:57



















