Ossetic - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Ossetic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.279x 3.29 0.2317% 140,728
16k 3.535x 3.54 0.2497% 130,553
32k 3.746x 3.75 0.2646% 123,211
64k 3.901x πŸ† 3.91 0.2756% 118,301

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Π’Π°Ρ…ΡŠΠ°Π·Ρ‚Ρ‹ Π€ΠΈΠ΄Π°Ρ€. Π”Ρ‹Π³ΡƒΡ€ΠΎΠ½-уырыссаг Π΄Π·Ρ‹Ρ€Π΄ΡƒΠ°Ρ‚ β€” Аланыстон, (, ) β€” Ρ…ΡƒΡ‹Π·.

Vocab Tokens Count
8k β–Ρ‚Π°Ρ…ΡŠΠ°Π·Ρ‚Ρ‹ ▁фидар . ▁дыгурон - уырыссаг ▁дзырдуат ▁— ▁аланыстон , ... (+5 more) 15
16k β–Ρ‚Π°Ρ…ΡŠΠ°Π·Ρ‚Ρ‹ ▁фидар . ▁дыгурон - уырыссаг ▁дзырдуат ▁— ▁аланыстон , ... (+5 more) 15
32k β–Ρ‚Π°Ρ…ΡŠΠ°Π·Ρ‚Ρ‹ ▁фидар . ▁дыгурон - уырыссаг ▁дзырдуат ▁— ▁аланыстон , ... (+5 more) 15
64k β–Ρ‚Π°Ρ…ΡŠΠ°Π·Ρ‚Ρ‹ ▁фидар . ▁дыгурон - уырыссаг ▁дзырдуат ▁— ▁аланыстон , ... (+5 more) 15

Sample 2: Π΄ΠΎΠ½ Ρƒ Π˜Ρ€Ρ‹ΡΡ‚ΠΎΠ½Ρ‹, Ρ€Π°Ρ…ΠΈΠ· Π¦Π°Π³ΡŠΠ°Ρ‚Ρ‹ Анастасия. Π˜Ρ€Ρ‹ΡΡ‚ΠΎΠ½Ρ‹ Ρ‚ΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ. Ρ…Π°ΠΉ. Π˜Ρ€Ρ‹ΡΡ‚ΠΎΠ½Ρ‹

Vocab Tokens Count
8k ▁дон ▁у ▁ирыстоны , ▁рахиз β–Ρ†Π°Π³ΡŠΠ°Ρ‚Ρ‹ ▁анастасия . ▁ирыстоны ▁топоними ... (+4 more) 14
16k ▁дон ▁у ▁ирыстоны , ▁рахиз β–Ρ†Π°Π³ΡŠΠ°Ρ‚Ρ‹ ▁анастасия . ▁ирыстоны ▁топоними ... (+4 more) 14
32k ▁дон ▁у ▁ирыстоны , ▁рахиз β–Ρ†Π°Π³ΡŠΠ°Ρ‚Ρ‹ ▁анастасия . ▁ирыстоны ▁топоними ... (+4 more) 14
64k ▁дон ▁у ▁ирыстоны , ▁рахиз β–Ρ†Π°Π³ΡŠΠ°Ρ‚Ρ‹ ▁анастасия . ▁ирыстоны ▁топоними ... (+4 more) 14

Sample 3: Π₯ΡƒΡ‹Π±Π°Ρ€Ρ†Π¦Π°Π³Π°Π΅Π²Π° А. Π”Π·. Вопонимия Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠΉ ΠžΡΠ΅Ρ‚ΠΈΠΈ β€” Π’Π»Π°Π΄ΠΈΠΊΠ°Π²ΠΊΠ°Π·: Π˜Ρ€, β€” с. 623. Ρƒ Π½...

Vocab Tokens Count
8k ▁хуы Π±Π°Ρ€ Ρ†Ρ†Π°Π³ Π°Π΅Π²Π° ▁а . ▁дз . ▁топонимия ▁сСвСрной ... (+24 more) 34
16k ▁хуы Π±Π°Ρ€ Ρ†Ρ†Π°Π³ Π°Π΅Π²Π° ▁а . ▁дз . ▁топонимия ▁сСвСрной ... (+24 more) 34
32k ▁хуы Π±Π°Ρ€ Ρ†Ρ†Π°Π³ Π°Π΅Π²Π° ▁а . ▁дз . ▁топонимия ▁сСвСрной ... (+23 more) 33
64k ▁хуы Π±Π°Ρ€ Ρ†Ρ†Π°Π³ Π°Π΅Π²Π° ▁а . ▁дз . ▁топонимия ▁сСвСрной ... (+22 more) 32

Key Findings

  • Best Compression: 64k achieves 3.901x compression
  • Lowest UNK Rate: 8k with 0.2317% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 3,788 11.89 11,541 24.3% 55.4%
2-gram Subword 406 πŸ† 8.67 3,916 57.9% 97.2%
3-gram Word 2,985 11.54 11,245 29.5% 61.0%
3-gram Subword 3,147 11.62 27,926 23.4% 65.1%
4-gram Word 4,436 12.12 19,787 27.9% 56.3%
4-gram Subword 13,689 13.74 117,148 13.3% 40.0%
5-gram Word 3,339 11.71 15,120 31.1% 60.3%
5-gram Subword 32,155 14.97 219,588 10.1% 30.1%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 административон Ρ†Π΅Π½Ρ‚Ρ€ 3,450
2 хуссар ирыстоны 2,544
3 Ρƒ сахар 2,437
4 Π· Π΄ 1,539
5 Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ 1,478

3-grams (Word):

Rank N-gram Count
1 административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ 1,464
2 Π· Π΄ ΠΈΡ€ΠΎΠ½ 1,320
3 ΠΉΓ¦ административон Ρ†Π΅Π½Ρ‚Ρ€ 1,314
4 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ 1,181
5 Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 1,177

4-grams (Word):

Rank N-gram Count
1 ΠΉΓ¦ административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ 1,306
2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 1,177
3 ΠΈΡ€ΠΎΠ½ 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ 1,177
4 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» 1,177
5 Π΄ ΠΈΡ€ΠΎΠ½ 2 Π°Π³ 1,177

5-grams (Word):

Rank N-gram Count
1 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 1,177
2 ΠΈΡ€ΠΎΠ½ 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» 1,177
3 Π΄ ΠΈΡ€ΠΎΠ½ 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ 1,177
4 Π· Π΄ ΠΈΡ€ΠΎΠ½ 2 Π°Π³ 1,177
5 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 372 1,167

2-grams (Subword):

Rank N-gram Count
1 Ρ‹ _ 115,086
2 ΠΎ Π½ 67,122
3 . _ 57,323
4 с Ρ‚ 50,166
5 , _ 48,007

3-grams (Subword):

Rank N-gram Count
1 ΠΎ Π½ _ 33,294
2 Ρ‚ Ρ‹ _ 26,081
3 _ β€” _ 23,993
4 _ Γ¦ ΠΌ 20,395
5 Γ¦ ΠΌ Γ¦ 20,225

4-grams (Subword):

Rank N-gram Count
1 _ Γ¦ ΠΌ Γ¦ 20,051
2 Γ¦ ΠΌ Γ¦ _ 19,557
3 ΠΎ Π½ Ρ‹ _ 10,876
4 _ ΠΉ Γ¦ _ 10,577
5 с Ρ‚ ΠΎ Π½ 9,896

5-grams (Subword):

Rank N-gram Count
1 _ Γ¦ ΠΌ Γ¦ _ 19,383
2 Ρ‹ с Ρ‚ ΠΎ Π½ 9,292
3 с Ρ‚ ΠΎ Π½ Ρ‹ 8,183
4 _ Π° Π· Ρ‹ _ 7,933
5 Ρ€ Ρ‹ с Ρ‚ ΠΎ 7,533

Key Findings

  • Best Perplexity: 2-gram (subword) with 406
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~30% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.6700 1.591 4.34 68,503 33.0%
1 Subword 1.2100 2.313 9.73 927 0.0%
2 Word 0.2070 1.154 1.45 292,738 79.3%
2 Subword 1.1075 2.155 6.21 9,001 0.0%
3 Word 0.0537 1.038 1.09 416,198 94.6%
3 Subword 0.8368 1.786 3.82 55,801 16.3%
4 Word 0.0178 πŸ† 1.012 1.03 443,373 98.2%
4 Subword 0.5695 1.484 2.37 212,713 43.0%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. Γ¦ΠΌΓ¦ xviii Ρ‚Π° сæ Π°Ρ€Π°Ρ€Π°Ρ‚Ρ‹ Ρ…ΠΎΡ… ирыстоны ацыдис райгуырдысты мамсыраты Ρ‚Π΅ΠΌΡ‹Ρ€Π±ΠΎΠ»Π°Ρ‚ Ρ‚ΡƒΡ€Ρ‡Ρ‹ сахар ΠΊΠΎΠ½Π³ΠΎΠΉΡ‹ ΠΊΠΎ...
  2. Ρƒ сахар свСрдловсчы сСргийы Ρ‡Ρ‹Π·Π³ ΠΊΡƒΡ‹ сты 10 48 ΠΊΠ°Π½Π΄Π΅ΠΌΠΈΡ€ kandemir 31 ΠΌΠ°Ρ‚Ρ‡Ρ‹ Π΄Γ¦Ρ€ Π½Ρ‹Π·Π·Π°ΡƒΡƒΠ°Ρ‚ Π°Π·Ρ‹
  3. ΠΉΓ¦ административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ ΠΈΠ½Π΄ΠΎΠ½Π΅Π·ΠΈΠΉΡ‹ Π°ΠΌΠ°Π»Ρ…ΡŠΠΎΠΌΠ°Π΄Ρ‹ Π°Ρ€Ρ…Π°ΠΉΡ‹Π½ Π°ΠΌΠ°Ρ€Ρ‹Π½Ρ‹Π» ΠΉΓ¦ Π»ΠΈΠ½Π½ΠΈΠΊ Γ¦ΠΌΓ¦ Π΄Γ¦Ρ€ ΠΊΠΎΠ΄Ρ‚ΠΎΠΉ Γ¦ΠΌΓ¦ Π΄ΡƒΠ³Ρ‚...

Context Size 2:

  1. хуссар ирыстоны закъон ΠΈΡ€ΠΎΠ½ ΠΌΡ‹Π³Π³Π°Π³ΠΎΠ½ ΠΈΡ€ΠΎΠ½ ΠΈΡƒΡƒΠΎΠ½ Π½ΠΎΠΌΡ…Ρ‹Π³ΡŠΠ΄ сты ΠΈΡ€ΠΎΠ½ ΠΌΡ‹Π³Π³Π°Π³ Γ¦ΠΌΓ¦ ΡƒΡ‹Ρ€Ρ‹ΠΌ ΠΏΠ°Π³Π° Ρ‚ΠΎΡ‚Ρ‹ΠΊΠΊ Π°Π±ΠΎΠ½Ρ‹...
  2. Ρƒ сахар чСлябинсчы ис Π°ΡˆΠ°ΠΉΡ‹ Ρ€Π°ΠΉΠΎΠ½Ρ‹ административон Ρ†Π΅Π½Ρ‚Ρ€ Π°Π·Ρ‹ ΠΎΠ½Π³ ΡƒΡ‹Ρ†Ρ‹ Ρ…ΡƒΡ‹Π΄Ρ‚ΠΎΠΉ ΡƒΡ‹Ρ†Ρ‹ Ρ…ΠΎΠ½Ρ‹Π½ Π±Π°ΠΉΠ΄Ρ‹Π΄Ρ‚ΠΎΠΉ Ρƒ...
  3. административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ сахар ис Π±Ρ€Π°Π±Π°Π½Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ²ΠΈΠ½Ρ†ΠΈΠΉΡ‹ административон Ρ†Π΅Π½Ρ‚Ρ€ Π°ΠΊΠ²ΠΈΡ‚Π°Π½ΠΈΠΉΡ‹

Context Size 3:

  1. административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ Ρ‡Π°Ρ€Π»ΡŒΠ· Ρ‚Π°ΡƒΠ½ Π²ΠΈΡ€Π΄ΠΆΠΈΠ½ΠΈΠΉΡ‹
  2. Π· Π΄ ΠΈΡ€ΠΎΠ½ 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 372 с сты ΠΈΡ€ΠΎΠ½ ΠΌΡ‹Π³Π³Π°Π³ Ρ…ΡŠΠ°Π½Ρ‚Π΅ΠΌΡ‹Ρ€Π°Ρ‚Ρ‹ Π°Π»ΠΈΠ±Π΅Π³ Γ¦ΠΌΓ¦ ΠΉΓ¦ династи
  3. ΠΉΓ¦ административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ Ρ…ΡƒΠ΄ΠΆΠ°Π½Π΄

Context Size 4:

  1. ΠΉΓ¦ административон Ρ†Π΅Π½Ρ‚Ρ€ Ρƒ нагасаки
  2. Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 372 с ныхас сост Ρ€ с ΠΊΠ°Π½Ρ‚Π΅ΠΌΠΈΡ€ΠΎΠ²Π° Π½Π°ΡƒΠΊΠΎΠ½ Ρ€Π΅Π΄ дТусойты Π½Π°Ρ„ΠΈ ΠΈΡ€ 263 Ρ„ сты
  3. 2 Π°Π³ Ρ€Π°ΡƒΠ°Π³ΡŠΠ΄ Ρ†Ρ…ΠΈΠ½Π²Π°Π» рСспублика 372 с сты ΠΈΡ€ΠΎΠ½ ΠΌΡ‹Π³Π³Π°Π³ Γ¦ΠΌΓ¦ сты ΠΌΡ‹Π³Π³Π°Π³ ΡƒΡ‹Π΄ сæ Π΄Γ¦Ρ€ ΡƒΡ‹Π΄ чСсСлты ΠΊΠΎΠΌΡ‹

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _Ρ€Π΄._уысистры_Ρ€_
  2. ардтисовис.ΠΈ)_Π»Ρ†
  3. Ρ‹_Ρ„_Π°Π΄Π°Π½ΠΎΠΌ_Ρ†ΠΈΠ½_с

Context Size 2:

  1. Ρ‹_ΠΌΡ‹Π³ΡƒΡ‹ΠΉ_Γ¦ΠΌ_ΠΊΠ°Π·ΠΎΠ½
  2. ΠΎΠ½_(райгуырыстор,
  3. ._аслогонограты_Π°

Context Size 3:

  1. ΠΎΠ½_Π΄ΠΈΡ…_ΠΊΠΎΠ΄Ρ‚ΠΎΠΉ,_ΡƒΡ‹ΠΌ
  2. Ρ‚Ρ‹_ΠΈΠΌΠΏΠ΅Ρ€ΠΈΠΉΡ‹_сСдСрл
  3. _β€”_458_с._истас_ΠΊΠΎ

Context Size 4:

  1. æмæ_симиля»_«Тизнью
  2. _Γ¦ΠΌΓ¦_Π³Π΅ΠΎΡ€Π³ΠΈΠΉΡ‹_Π°Π·Ρ‹_2
  3. ΠΎΠ½Ρ‹_Ρ€Π°ΠΉΠΎΠ½Ρ‹,_созыры_

Key Findings

  • Best Predictability: Context-4 (word) with 98.2% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (212,713 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 26,680
Total Tokens 558,043
Mean Frequency 20.92
Median Frequency 3
Frequency Std Dev 234.02

Most Common Words

Rank Word Frequency
1 Γ¦ΠΌΓ¦ 20,225
2 Ρƒ 19,112
3 ΠΉΓ¦ 10,772
4 Π°Π·Ρ‹ 9,341
5 ирыстоны 6,756
6 ΠΈΡ€ΠΎΠ½ 6,567
7 сахар 4,914
8 ис 4,518
9 ΠΈ 4,222
10 Ρ€Π°ΠΉΠΎΠ½Ρ‹ 4,121

Least Common Words (from vocabulary)

Rank Word Frequency
1 Π²Π°Π·Ρ‹Π³Π΄ΠΆΡ‹Π½Π΄Σ•Ρ€ 2
2 ΠΌΠ°Ρ€Π΄Π°Π½ 2
3 Π±Π΅Ρ€Π½Π΅Ρ‚ 2
4 бастроп 2
5 Π»Π»Π°Π½ΠΎ 2
6 мСйсон 2
7 лампасас 2
8 накодочСс 2
9 Ρ‡ΠΈΡ€Ρ†ΡŠΠΈΠ½Π°ΠΉΡ‹ 2
10 ΠΊΠ°ΠΊΠ΅Ρ‚Π° 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.1191
RΒ² (Goodness of Fit) 0.996097
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 41.2%
Top 1,000 70.4%
Top 5,000 86.6%
Top 10,000 92.4%

Key Findings

  • Zipf Compliance: RΒ²=0.9961 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 41.2% of corpus
  • Long Tail: 16,680 words needed for remaining 7.6% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.7990 πŸ† 0.3569 N/A N/A
mono_64d 64 0.5337 0.3206 N/A N/A
mono_128d 128 0.1178 0.3107 N/A N/A
aligned_32d 32 0.7990 0.3615 0.0140 0.1100
aligned_64d 64 0.5337 0.3182 0.0180 0.1460
aligned_128d 128 0.1178 0.3127 0.0540 0.2240

Key Findings

  • Best Isotropy: mono_32d with 0.7990 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3301. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 5.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.006 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-с сылгоймадТы, суарх, соня
-Π° Π°Ρ€Ρ…ΠΈΠΏΠ΅Π»Π°Π³, Π°Π±Π°Π»Ρ†, Π°Π»Π»ΠΎΠ½Ρ‚Ρ‹
-ΠΊ ΠΊΠ»Π°Ρ€ΠΊ, ΠΊΡƒΡ€Ρ‹, ΠΊΠ°Π΄Ρ‹
-Π± Π±ΠΈΡ‚Ρƒ, балаш, Π±ΠΈΠ΄Π°Ρ€Ρ‹
-ΠΌ ΠΌΠ΅Π΄Π·ΠΈΠ»Π°Π±ΠΎΡ€Ρ†Π΅, моисССв, ΠΌΠ°ΠΌΡ‹Ρ‚Ρ‚Ρ‹
-Π΄ Π΄ΠΆΠ΅Π±Π΅Ρ‚ΡŠΠ°, Π΄Π·Π°Ρƒ, Π΄Π°ΡƒΡ‹Ρ€Π°Ρ‚Ρ‹
-Ρ‚ тырсыгом, Ρ‚Ρ€Π°Π½ΡΠΈΠ»ΡŒΠ²Π°Π½ΠΈ, Ρ‚ΡŠΠΈΠ»ΠΈΠ°Π½Π°
-Π±Π° балаш, бакусыны, батиста

Productive Suffixes

Suffix Examples
-Ρ‹ сылгоймадТы, Ρ€Π°ΡƒΠ°ΠΉΡ‹, ратдзысты
-Π½ Π³ΡƒΡ€Π΄ΠΆΠ°Π°Π½, Π°ΠΊΡ‚ΡƒΠ°Π»ΠΎΠ½, ΠΎΠΊΠΊΡƒΠΏΠ°Ρ†ΠΈΠΎΠ½
-ΠΉΡ‹ Ρ€Π°ΡƒΠ°ΠΉΡ‹, ΠΏΠΈΠ΅Ρ€ΠΈΠΉΡ‹, росариойы
-Ρ‚Ρ‹ ратдзысты, Π°Π»Π»ΠΎΠ½Ρ‚Ρ‹, Π°Ρ„Ρ€ΠΈΠΊΠ°Π½Π΅Ρ€Ρ‚Ρ‹
-ΠΎΠ½ Π°ΠΊΡ‚ΡƒΠ°Π»ΠΎΠ½, ΠΎΠΊΠΊΡƒΠΏΠ°Ρ†ΠΈΠΎΠ½, микрофинансон
-ΠΈ Π»Π°Ρ€ΠΈΠ΄ΠΆΠ°Π½ΠΈ, эстСли, Ρ‚Ρ€Π°Π½ΡΠΈΠ»ΡŒΠ²Π°Π½ΠΈ
-Π° ΠΏΠΈΡ€ΠΊΠ°Π½ΠΌΠ°Π°, Π΄ΠΆΠ΅Π±Π΅Ρ‚ΡŠΠ°, сота
-ΠΉ владикавказский, ΠΊΠ°Π»ΠΈΠΉ, рафыстой

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Π΄Ρ‚ΠΎΠΉ 2.00x 22 contexts Ρ€Π°Π΄Ρ‚ΠΎΠΉ, Π°Ρ€Π΄Ρ‚ΠΎΠΉ, ΡƒΡ‹Π΄Ρ‚ΠΎΠΉ
ысты 1.84x 25 contexts ыстыр, фысты, мысты
ΠΊΠΎΠ΄Ρ‚ 1.92x 21 contexts ΠΊΠΎΠ΄Ρ‚Π°, ΠΊΠΎΠ΄Ρ‚ΠΎΠΉ, ΠΊΠΎΠ΄Ρ‚ΠΎΠ½
Π°Ρ…Π°Ρ€ 1.92x 20 contexts сахар, ΠΌΠ°Ρ…Π°Ρ€, ΡˆΠ°Ρ…Π°Ρ€
дыст 1.94x 18 contexts цыдысты, уадысты, равдыст
ыдис 1.90x 17 contexts уыдис, цыдис, ссыдис
Ρ†Π΅Π½Ρ‚ 1.89x 17 contexts Ρ†Π΅Π½Ρ‚Ρ€, Ρ†Π΅Π½Ρ‚Ρ‹, Ρ†Π΅Π½Ρ‚Ρ€Π°
Ρ€Π°ΠΉΠΎ 2.16x 10 contexts Ρ€Π°ΠΉΠΎΠ½, Ρ€Π°ΠΉΠΎΠ½ΠΈ, Ρ€Π°ΠΉΠΎΠ½Π΅
Π³ΡƒΡ‹Ρ€ 1.50x 27 contexts Π³ΡƒΡ‹Ρ€Ρ‹, Π³ΡƒΡ‹Ρ€Π΄, Π°Π³ΡƒΡ‹Ρ€Π΄
Π°ΠΉΠΎΠ½ 1.83x 14 contexts Ρ…Π°ΠΉΠΎΠ½, Ρ€Π°ΠΉΠΎΠ½, Ρ€Π°ΠΉΠΎΠ½ΠΈ
истр 1.91x 12 contexts бистра, истрийы, министр
Π΅Π½Ρ‚Ρ€ 2.07x 8 contexts Ρ†Π΅Π½Ρ‚Ρ€, Ρ†Π΅Π½Ρ‚Ρ€Π°, Ρ†Π΅Π½Ρ‚Ρ€Π΅

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ΠΊ -Ρ‹ 203 words ΠΊΠΎΠ½Ρ„Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΉΡ‹, ΠΊΠΈΠ·ΠΈΠ»ΡŽΡ€Ρ‚Ρ‹
-с -Ρ‹ 138 words сконды, слСсыры
-Π± -Ρ‹ 126 words Π±Π°Π½Ρ‹ΠΌΠ°ΠΉΡ‹Π½Ρ‹, Π±ΠΈΡ†ΡŠΠΎΡ‚Ρ‹
-Π° -Ρ‹ 118 words алСксСйы, Π°Π·Π°Ρ€Ρ‹
-ΠΌ -Ρ‹ 112 words ΠΌΠ°Π»Π°ΠΉΠ·ΠΈΠΉΡ‹, ΠΌΡƒΠ³Π°Π½Ρ‹
-Π΄ -Ρ‹ 105 words Π΄ΠΈΠΌΠΈΡ‚Ρ€ΠΎΠ²Ρ‹, Π΄Π·ΠΈΠ΄Π·Π°ΠΉΡ‹
-Ρ‚ -Ρ‹ 100 words Ρ‚Π»Π°Ρ‚Ρ‹, Ρ‚ΡƒΡ€ΠΊΠΌΠ°Π½Ρ‡Π°ΠΉΡ‹
-Π³ -Ρ‹ 97 words Π³Ρ€ΠΎΠ΄Π½ΠΎΠΉΡ‹, габысаты
-ΠΏ -Ρ‹ 69 words ΠΏΠ΅Ρ€ΡƒΠΉΡ‹, парадоксы
-ΠΊ -Ρ‚Ρ‹ 64 words ΠΊΠΈΠ·ΠΈΠ»ΡŽΡ€Ρ‚Ρ‹, ΠΊΡŠΠΎΠ½ΠΈΠ°Ρ‚Ρ‹

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
ΠΌΡƒΠ·Ρ‹ΠΊΠ°Π½Ρ‚Ρ‹ ΠΌΡƒΠ·Ρ‹ΠΊΠ°-Π½-Ρ‚Ρ‹ 7.5 Π½
комплСксной комплСкс-н-ой 7.5 н
Ρ„Ρ‹Ρ€Ρ‚Ρ‹Ρ„Ρ‹Ρ€Ρ‚ Ρ„Ρ‹Ρ€Ρ‚Ρ‹Ρ„Ρ‹-Ρ€-Ρ‚ 7.5 Ρ€
Π±Π΅Ρ€Π΄Π·Π΅ΠΉΠ½Π°Π³ Π±Π΅Ρ€Π΄Π·Π΅ΠΉ-Π½-Π°Π³ 7.5 Π½
Π±Π΅Π΄ΠΆΡ‹Π·Π°Ρ‚Ρ‹ Π±Π΅Π΄ΠΆΡ‹Π·-Π°-Ρ‚Ρ‹ 7.5 Π°
административно административ-Π½-ΠΎ 7.5 Π½
чырыстонады чырыстон-Π°Π΄-Ρ‹ 6.0 чырыстон
тырысатыл тырыса-Ρ‚Ρ‹-Π» 6.0 тырыса
куыстадон куыст-Π°Π΄-ΠΎΠ½ 6.0 куыст
кастилиаг касти-Π»ΠΈ-Π°Π³ 6.0 касти
алСксандрияйы алСксандр-ия-ΠΉΡ‹ 6.0 алСксандр
Π΄Π·Π°ΡƒΠΌΠ°ΠΉΡ‹Π» Π΄Π·Π°ΡƒΠΌΠ°-ΠΉΡ‹-Π» 6.0 Π΄Π·Π°ΡƒΠΌΠ°
Ρ€Ρ‹Π½Ρ‡Ρ‹Π½Ρ‚Ρ‹Π» Ρ€Ρ‹Π½Ρ‡Ρ‹Π½-Ρ‚Ρ‹-Π» 6.0 Ρ€Ρ‹Π½Ρ‡Ρ‹Π½
ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½-Π½Ρ‹-Π΅ 6.0 ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½
ΡΠ°Π»ΡŒΠ²Π°Π΄ΠΎΡ€Π°Π³ ΡΠ°Π»ΡŒΠ²Π°Π΄ΠΎΡ€-Π°Π³ 4.5 ΡΠ°Π»ΡŒΠ²Π°Π΄ΠΎΡ€

6.6 Linguistic Interpretation

Automated Insight: The language Ossetic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.90x)
N-gram 2-gram Lowest perplexity (406)
Markov Context-4 Highest predictability (98.2%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-10 17:09:46

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/os