Ossetic - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Ossetic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.279x | 3.29 | 0.2317% | 140,728 |
| 16k | 3.535x | 3.54 | 0.2497% | 130,553 |
| 32k | 3.746x | 3.75 | 0.2646% | 123,211 |
| 64k | 3.901x π | 3.91 | 0.2756% | 118,301 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Π’Π°Ρ
ΡΠ°Π·ΡΡ Π€ΠΈΠ΄Π°Ρ. ΠΡΠ³ΡΡΠΎΠ½-ΡΡΡΡΡΡΠ°Π³ Π΄Π·ΡΡΠ΄ΡΠ°Ρ β ΠΠ»Π°Π½ΡΡΡΠΎΠ½, (, ) β Ρ
ΡΡΠ·.
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡΠ°Ρ
ΡΠ°Π·ΡΡ βΡΠΈΠ΄Π°Ρ . βΠ΄ΡΠ³ΡΡΠΎΠ½ - ΡΡΡΡΡΡΠ°Π³ βΠ΄Π·ΡΡΠ΄ΡΠ°Ρ ββ βΠ°Π»Π°Π½ΡΡΡΠΎΠ½ , ... (+5 more) |
15 |
| 16k | βΡΠ°Ρ
ΡΠ°Π·ΡΡ βΡΠΈΠ΄Π°Ρ . βΠ΄ΡΠ³ΡΡΠΎΠ½ - ΡΡΡΡΡΡΠ°Π³ βΠ΄Π·ΡΡΠ΄ΡΠ°Ρ ββ βΠ°Π»Π°Π½ΡΡΡΠΎΠ½ , ... (+5 more) |
15 |
| 32k | βΡΠ°Ρ
ΡΠ°Π·ΡΡ βΡΠΈΠ΄Π°Ρ . βΠ΄ΡΠ³ΡΡΠΎΠ½ - ΡΡΡΡΡΡΠ°Π³ βΠ΄Π·ΡΡΠ΄ΡΠ°Ρ ββ βΠ°Π»Π°Π½ΡΡΡΠΎΠ½ , ... (+5 more) |
15 |
| 64k | βΡΠ°Ρ
ΡΠ°Π·ΡΡ βΡΠΈΠ΄Π°Ρ . βΠ΄ΡΠ³ΡΡΠΎΠ½ - ΡΡΡΡΡΡΠ°Π³ βΠ΄Π·ΡΡΠ΄ΡΠ°Ρ ββ βΠ°Π»Π°Π½ΡΡΡΠΎΠ½ , ... (+5 more) |
15 |
Sample 2: Π΄ΠΎΠ½ Ρ ΠΡΡΡΡΠΎΠ½Ρ, ΡΠ°Ρ
ΠΈΠ· Π¦Π°Π³ΡΠ°ΡΡ ΠΠ½Π°ΡΡΠ°ΡΠΈΡ. ΠΡΡΡΡΠΎΠ½Ρ ΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ. Ρ
Π°ΠΉ. ΠΡΡΡΡΠΎΠ½Ρ
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ΄ΠΎΠ½ βΡ βΠΈΡΡΡΡΠΎΠ½Ρ , βΡΠ°Ρ
ΠΈΠ· βΡΠ°Π³ΡΠ°ΡΡ βΠ°Π½Π°ΡΡΠ°ΡΠΈΡ . βΠΈΡΡΡΡΠΎΠ½Ρ βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ ... (+4 more) |
14 |
| 16k | βΠ΄ΠΎΠ½ βΡ βΠΈΡΡΡΡΠΎΠ½Ρ , βΡΠ°Ρ
ΠΈΠ· βΡΠ°Π³ΡΠ°ΡΡ βΠ°Π½Π°ΡΡΠ°ΡΠΈΡ . βΠΈΡΡΡΡΠΎΠ½Ρ βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ ... (+4 more) |
14 |
| 32k | βΠ΄ΠΎΠ½ βΡ βΠΈΡΡΡΡΠΎΠ½Ρ , βΡΠ°Ρ
ΠΈΠ· βΡΠ°Π³ΡΠ°ΡΡ βΠ°Π½Π°ΡΡΠ°ΡΠΈΡ . βΠΈΡΡΡΡΠΎΠ½Ρ βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ ... (+4 more) |
14 |
| 64k | βΠ΄ΠΎΠ½ βΡ βΠΈΡΡΡΡΠΎΠ½Ρ , βΡΠ°Ρ
ΠΈΠ· βΡΠ°Π³ΡΠ°ΡΡ βΠ°Π½Π°ΡΡΠ°ΡΠΈΡ . βΠΈΡΡΡΡΠΎΠ½Ρ βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈ ... (+4 more) |
14 |
Sample 3: Π₯ΡΡΠ±Π°ΡΡΠ¦Π°Π³Π°Π΅Π²Π° Π. ΠΠ·. Π’ΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ Π‘Π΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΡΠ΅ΡΠΈΠΈ β ΠΠ»Π°Π΄ΠΈΠΊΠ°Π²ΠΊΠ°Π·: ΠΡ, β Ρ. 623. Ρ Π½...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡ
ΡΡ Π±Π°Ρ ΡΡΠ°Π³ Π°Π΅Π²Π° βΠ° . βΠ΄Π· . βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ βΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ... (+24 more) |
34 |
| 16k | βΡ
ΡΡ Π±Π°Ρ ΡΡΠ°Π³ Π°Π΅Π²Π° βΠ° . βΠ΄Π· . βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ βΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ... (+24 more) |
34 |
| 32k | βΡ
ΡΡ Π±Π°Ρ ΡΡΠ°Π³ Π°Π΅Π²Π° βΠ° . βΠ΄Π· . βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ βΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ... (+23 more) |
33 |
| 64k | βΡ
ΡΡ Π±Π°Ρ ΡΡΠ°Π³ Π°Π΅Π²Π° βΠ° . βΠ΄Π· . βΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ βΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ... (+22 more) |
32 |
Key Findings
- Best Compression: 64k achieves 3.901x compression
- Lowest UNK Rate: 8k with 0.2317% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 3,788 | 11.89 | 11,541 | 24.3% | 55.4% |
| 2-gram | Subword | 406 π | 8.67 | 3,916 | 57.9% | 97.2% |
| 3-gram | Word | 2,985 | 11.54 | 11,245 | 29.5% | 61.0% |
| 3-gram | Subword | 3,147 | 11.62 | 27,926 | 23.4% | 65.1% |
| 4-gram | Word | 4,436 | 12.12 | 19,787 | 27.9% | 56.3% |
| 4-gram | Subword | 13,689 | 13.74 | 117,148 | 13.3% | 40.0% |
| 5-gram | Word | 3,339 | 11.71 | 15,120 | 31.1% | 60.3% |
| 5-gram | Subword | 32,155 | 14.97 | 219,588 | 10.1% | 30.1% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ |
3,450 |
| 2 | Ρ
ΡΡΡΠ°Ρ ΠΈΡΡΡΡΠΎΠ½Ρ |
2,544 |
| 3 | Ρ ΡΠ°Ρ
Π°Ρ |
2,437 |
| 4 | Π· Π΄ |
1,539 |
| 5 | ΡΠ΅Π½ΡΡ Ρ |
1,478 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ |
1,464 |
| 2 | Π· Π΄ ΠΈΡΠΎΠ½ |
1,320 |
| 3 | ΠΉΓ¦ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ |
1,314 |
| 4 | 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ |
1,181 |
| 5 | ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° |
1,177 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΉΓ¦ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ |
1,306 |
| 2 | Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° |
1,177 |
| 3 | ΠΈΡΠΎΠ½ 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ |
1,177 |
| 4 | 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» |
1,177 |
| 5 | Π΄ ΠΈΡΠΎΠ½ 2 Π°Π³ |
1,177 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° |
1,177 |
| 2 | ΠΈΡΠΎΠ½ 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» |
1,177 |
| 3 | Π΄ ΠΈΡΠΎΠ½ 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ |
1,177 |
| 4 | Π· Π΄ ΠΈΡΠΎΠ½ 2 Π°Π³ |
1,177 |
| 5 | Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ
ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° 372 |
1,167 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ _ |
115,086 |
| 2 | ΠΎ Π½ |
67,122 |
| 3 | . _ |
57,323 |
| 4 | Ρ Ρ |
50,166 |
| 5 | , _ |
48,007 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΎ Π½ _ |
33,294 |
| 2 | Ρ Ρ _ |
26,081 |
| 3 | _ β _ |
23,993 |
| 4 | _ Γ¦ ΠΌ |
20,395 |
| 5 | Γ¦ ΠΌ Γ¦ |
20,225 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ Γ¦ ΠΌ Γ¦ |
20,051 |
| 2 | Γ¦ ΠΌ Γ¦ _ |
19,557 |
| 3 | ΠΎ Π½ Ρ _ |
10,876 |
| 4 | _ ΠΉ Γ¦ _ |
10,577 |
| 5 | Ρ Ρ ΠΎ Π½ |
9,896 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ Γ¦ ΠΌ Γ¦ _ |
19,383 |
| 2 | Ρ Ρ Ρ ΠΎ Π½ |
9,292 |
| 3 | Ρ Ρ ΠΎ Π½ Ρ |
8,183 |
| 4 | _ Π° Π· Ρ _ |
7,933 |
| 5 | Ρ Ρ Ρ Ρ ΠΎ |
7,533 |
Key Findings
- Best Perplexity: 2-gram (subword) with 406
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~30% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.6700 | 1.591 | 4.34 | 68,503 | 33.0% |
| 1 | Subword | 1.2100 | 2.313 | 9.73 | 927 | 0.0% |
| 2 | Word | 0.2070 | 1.154 | 1.45 | 292,738 | 79.3% |
| 2 | Subword | 1.1075 | 2.155 | 6.21 | 9,001 | 0.0% |
| 3 | Word | 0.0537 | 1.038 | 1.09 | 416,198 | 94.6% |
| 3 | Subword | 0.8368 | 1.786 | 3.82 | 55,801 | 16.3% |
| 4 | Word | 0.0178 π | 1.012 | 1.03 | 443,373 | 98.2% |
| 4 | Subword | 0.5695 | 1.484 | 2.37 | 212,713 | 43.0% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
Γ¦ΠΌΓ¦ xviii ΡΠ° ΡΓ¦ Π°ΡΠ°ΡΠ°ΡΡ Ρ ΠΎΡ ΠΈΡΡΡΡΠΎΠ½Ρ Π°ΡΡΠ΄ΠΈΡ ΡΠ°ΠΉΠ³ΡΡΡΠ΄ΡΡΡΡ ΠΌΠ°ΠΌΡΡΡΠ°ΡΡ ΡΠ΅ΠΌΡΡΠ±ΠΎΠ»Π°Ρ ΡΡΡΡΡ ΡΠ°Ρ Π°Ρ ΠΊΠΎΠ½Π³ΠΎΠΉΡ ΠΊΠΎ...Ρ ΡΠ°Ρ Π°Ρ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΡΡΡ ΡΠ΅ΡΠ³ΠΈΠΉΡ ΡΡΠ·Π³ ΠΊΡΡ ΡΡΡ 10 48 ΠΊΠ°Π½Π΄Π΅ΠΌΠΈΡ kandemir 31 ΠΌΠ°ΡΡΡ Π΄Γ¦Ρ Π½ΡΠ·Π·Π°ΡΡΠ°Ρ Π°Π·ΡΠΉΓ¦ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ ΠΈΠ½Π΄ΠΎΠ½Π΅Π·ΠΈΠΉΡ Π°ΠΌΠ°Π»Ρ ΡΠΎΠΌΠ°Π΄Ρ Π°ΡΡ Π°ΠΉΡΠ½ Π°ΠΌΠ°ΡΡΠ½ΡΠ» ΠΉΓ¦ Π»ΠΈΠ½Π½ΠΈΠΊ Γ¦ΠΌΓ¦ Π΄Γ¦Ρ ΠΊΠΎΠ΄ΡΠΎΠΉ Γ¦ΠΌΓ¦ Π΄ΡΠ³Ρ...
Context Size 2:
Ρ ΡΡΡΠ°Ρ ΠΈΡΡΡΡΠΎΠ½Ρ Π·Π°ΠΊΡΠΎΠ½ ΠΈΡΠΎΠ½ ΠΌΡΠ³Π³Π°Π³ΠΎΠ½ ΠΈΡΠΎΠ½ ΠΈΡΡΠΎΠ½ Π½ΠΎΠΌΡ ΡΠ³ΡΠ΄ ΡΡΡ ΠΈΡΠΎΠ½ ΠΌΡΠ³Π³Π°Π³ Γ¦ΠΌΓ¦ ΡΡΡΡΠΌ ΠΏΠ°Π³Π° ΡΠΎΡΡΠΊΠΊ Π°Π±ΠΎΠ½Ρ...Ρ ΡΠ°Ρ Π°Ρ ΡΠ΅Π»ΡΠ±ΠΈΠ½ΡΡΡ ΠΈΡ Π°ΡΠ°ΠΉΡ ΡΠ°ΠΉΠΎΠ½Ρ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Π°Π·Ρ ΠΎΠ½Π³ ΡΡΡΡ Ρ ΡΡΠ΄ΡΠΎΠΉ ΡΡΡΡ Ρ ΠΎΠ½ΡΠ½ Π±Π°ΠΉΠ΄ΡΠ΄ΡΠΎΠΉ Ρ...Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ ΡΠ°Ρ Π°Ρ ΠΈΡ Π±ΡΠ°Π±Π°Π½ΡΡ ΠΏΡΠΎΠ²ΠΈΠ½ΡΠΈΠΉΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Π°ΠΊΠ²ΠΈΡΠ°Π½ΠΈΠΉΡ
Context Size 3:
Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ ΡΠ°ΡΠ»ΡΠ· ΡΠ°ΡΠ½ Π²ΠΈΡΠ΄ΠΆΠΈΠ½ΠΈΠΉΡΠ· Π΄ ΠΈΡΠΎΠ½ 2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° 372 Ρ ΡΡΡ ΠΈΡΠΎΠ½ ΠΌΡΠ³Π³Π°Π³ Ρ ΡΠ°Π½ΡΠ΅ΠΌΡΡΠ°ΡΡ Π°Π»ΠΈΠ±Π΅Π³ Γ¦ΠΌΓ¦ ΠΉΓ¦ Π΄ΠΈΠ½Π°ΡΡΠΈΠΉΓ¦ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ Ρ ΡΠ΄ΠΆΠ°Π½Π΄
Context Size 4:
ΠΉΓ¦ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²ΠΎΠ½ ΡΠ΅Π½ΡΡ Ρ Π½Π°Π³Π°ΡΠ°ΠΊΠΈΠ°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° 372 Ρ Π½ΡΡ Π°Ρ ΡΠΎΡΡ Ρ Ρ ΠΊΠ°Π½ΡΠ΅ΠΌΠΈΡΠΎΠ²Π° Π½Π°ΡΠΊΠΎΠ½ ΡΠ΅Π΄ Π΄ΠΆΡΡΠΎΠΉΡΡ Π½Π°ΡΠΈ ΠΈΡ 263 Ρ ΡΡΡ2 Π°Π³ ΡΠ°ΡΠ°Π³ΡΠ΄ ΡΡ ΠΈΠ½Π²Π°Π» ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° 372 Ρ ΡΡΡ ΠΈΡΠΎΠ½ ΠΌΡΠ³Π³Π°Π³ Γ¦ΠΌΓ¦ ΡΡΡ ΠΌΡΠ³Π³Π°Π³ ΡΡΠ΄ ΡΓ¦ Π΄Γ¦Ρ ΡΡΠ΄ ΡΠ΅ΡΠ΅Π»ΡΡ ΠΊΠΎΠΌΡ
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΡΠ΄._ΡΡΡΠΈΡΡΡΡ_Ρ_Π°ΡΠ΄ΡΠΈΡΠΎΠ²ΠΈΡ.ΠΈ)_Π»ΡΡ_Ρ_Π°Π΄Π°Π½ΠΎΠΌ_ΡΠΈΠ½_Ρ
Context Size 2:
Ρ_ΠΌΡΠ³ΡΡΠΉ_Γ¦ΠΌ_ΠΊΠ°Π·ΠΎΠ½ΠΎΠ½_(ΡΠ°ΠΉΠ³ΡΡΡΡΡΡΠΎΡ,._Π°ΡΠ»ΠΎΠ³ΠΎΠ½ΠΎΠ³ΡΠ°ΡΡ_Π°
Context Size 3:
ΠΎΠ½_Π΄ΠΈΡ _ΠΊΠΎΠ΄ΡΠΎΠΉ,_ΡΡΠΌΡΡ_ΠΈΠΌΠΏΠ΅ΡΠΈΠΉΡ_ΡΠ΅Π΄Π΅ΡΠ»_β_458_Ρ._ΠΈΡΡΠ°Ρ_ΠΊΠΎ
Context Size 4:
Γ¦ΠΌΓ¦_ΡΠΈΠΌΠΈΠ»ΡΒ»_Β«ΠΆΠΈΠ·Π½ΡΡ_Γ¦ΠΌΓ¦_Π³Π΅ΠΎΡΠ³ΠΈΠΉΡ_Π°Π·Ρ_2ΠΎΠ½Ρ_ΡΠ°ΠΉΠΎΠ½Ρ,_ΡΠΎΠ·ΡΡΡ_
Key Findings
- Best Predictability: Context-4 (word) with 98.2% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (212,713 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 26,680 |
| Total Tokens | 558,043 |
| Mean Frequency | 20.92 |
| Median Frequency | 3 |
| Frequency Std Dev | 234.02 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Γ¦ΠΌΓ¦ | 20,225 |
| 2 | Ρ | 19,112 |
| 3 | ΠΉΓ¦ | 10,772 |
| 4 | Π°Π·Ρ | 9,341 |
| 5 | ΠΈΡΡΡΡΠΎΠ½Ρ | 6,756 |
| 6 | ΠΈΡΠΎΠ½ | 6,567 |
| 7 | ΡΠ°Ρ Π°Ρ | 4,914 |
| 8 | ΠΈΡ | 4,518 |
| 9 | ΠΈ | 4,222 |
| 10 | ΡΠ°ΠΉΠΎΠ½Ρ | 4,121 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π²Π°Π·ΡΠ³Π΄ΠΆΡΠ½Π΄ΣΡ | 2 |
| 2 | ΠΌΠ°ΡΠ΄Π°Π½ | 2 |
| 3 | Π±Π΅ΡΠ½Π΅Ρ | 2 |
| 4 | Π±Π°ΡΡΡΠΎΠΏ | 2 |
| 5 | Π»Π»Π°Π½ΠΎ | 2 |
| 6 | ΠΌΠ΅ΠΉΡΠΎΠ½ | 2 |
| 7 | Π»Π°ΠΌΠΏΠ°ΡΠ°Ρ | 2 |
| 8 | Π½Π°ΠΊΠΎΠ΄ΠΎΡΠ΅Ρ | 2 |
| 9 | ΡΠΈΡΡΡΠΈΠ½Π°ΠΉΡ | 2 |
| 10 | ΠΊΠ°ΠΊΠ΅ΡΠ° | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.1191 |
| RΒ² (Goodness of Fit) | 0.996097 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 41.2% |
| Top 1,000 | 70.4% |
| Top 5,000 | 86.6% |
| Top 10,000 | 92.4% |
Key Findings
- Zipf Compliance: RΒ²=0.9961 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 41.2% of corpus
- Long Tail: 16,680 words needed for remaining 7.6% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7990 π | 0.3569 | N/A | N/A |
| mono_64d | 64 | 0.5337 | 0.3206 | N/A | N/A |
| mono_128d | 128 | 0.1178 | 0.3107 | N/A | N/A |
| aligned_32d | 32 | 0.7990 | 0.3615 | 0.0140 | 0.1100 |
| aligned_64d | 64 | 0.5337 | 0.3182 | 0.0180 | 0.1460 |
| aligned_128d | 128 | 0.1178 | 0.3127 | 0.0540 | 0.2240 |
Key Findings
- Best Isotropy: mono_32d with 0.7990 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3301. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 5.4% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 1.006 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-Ρ |
ΡΡΠ»Π³ΠΎΠΉΠΌΠ°Π΄ΠΆΡ, ΡΡΠ°ΡΡ , ΡΠΎΠ½Ρ |
-Π° |
Π°ΡΡ ΠΈΠΏΠ΅Π»Π°Π³, Π°Π±Π°Π»Ρ, Π°Π»Π»ΠΎΠ½ΡΡ |
-ΠΊ |
ΠΊΠ»Π°ΡΠΊ, ΠΊΡΡΡ, ΠΊΠ°Π΄Ρ |
-Π± |
Π±ΠΈΡΡ, Π±Π°Π»Π°Ρ, Π±ΠΈΠ΄Π°ΡΡ |
-ΠΌ |
ΠΌΠ΅Π΄Π·ΠΈΠ»Π°Π±ΠΎΡΡΠ΅, ΠΌΠΎΠΈΡΠ΅Π΅Π², ΠΌΠ°ΠΌΡΡΡΡ |
-Π΄ |
Π΄ΠΆΠ΅Π±Π΅ΡΡΠ°, Π΄Π·Π°Ρ, Π΄Π°ΡΡΡΠ°ΡΡ |
-Ρ |
ΡΡΡΡΡΠ³ΠΎΠΌ, ΡΡΠ°Π½ΡΠΈΠ»ΡΠ²Π°Π½ΠΈ, ΡΡΠΈΠ»ΠΈΠ°Π½Π° |
-Π±Π° |
Π±Π°Π»Π°Ρ, Π±Π°ΠΊΡΡΡΠ½Ρ, Π±Π°ΡΠΈΡΡΠ° |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Ρ |
ΡΡΠ»Π³ΠΎΠΉΠΌΠ°Π΄ΠΆΡ, ΡΠ°ΡΠ°ΠΉΡ, ΡΠ°ΡΠ΄Π·ΡΡΡΡ |
-Π½ |
Π³ΡΡΠ΄ΠΆΠ°Π°Π½, Π°ΠΊΡΡΠ°Π»ΠΎΠ½, ΠΎΠΊΠΊΡΠΏΠ°ΡΠΈΠΎΠ½ |
-ΠΉΡ |
ΡΠ°ΡΠ°ΠΉΡ, ΠΏΠΈΠ΅ΡΠΈΠΉΡ, ΡΠΎΡΠ°ΡΠΈΠΎΠΉΡ |
-ΡΡ |
ΡΠ°ΡΠ΄Π·ΡΡΡΡ, Π°Π»Π»ΠΎΠ½ΡΡ, Π°ΡΡΠΈΠΊΠ°Π½Π΅ΡΡΡ |
-ΠΎΠ½ |
Π°ΠΊΡΡΠ°Π»ΠΎΠ½, ΠΎΠΊΠΊΡΠΏΠ°ΡΠΈΠΎΠ½, ΠΌΠΈΠΊΡΠΎΡΠΈΠ½Π°Π½ΡΠΎΠ½ |
-ΠΈ |
Π»Π°ΡΠΈΠ΄ΠΆΠ°Π½ΠΈ, ΡΡΡΠ΅Π»ΠΈ, ΡΡΠ°Π½ΡΠΈΠ»ΡΠ²Π°Π½ΠΈ |
-Π° |
ΠΏΠΈΡΠΊΠ°Π½ΠΌΠ°Π°, Π΄ΠΆΠ΅Π±Π΅ΡΡΠ°, ΡΠΎΡΠ° |
-ΠΉ |
Π²Π»Π°Π΄ΠΈΠΊΠ°Π²ΠΊΠ°Π·ΡΠΊΠΈΠΉ, ΠΊΠ°Π»ΠΈΠΉ, ΡΠ°ΡΡΡΡΠΎΠΉ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
Π΄ΡΠΎΠΉ |
2.00x | 22 contexts | ΡΠ°Π΄ΡΠΎΠΉ, Π°ΡΠ΄ΡΠΎΠΉ, ΡΡΠ΄ΡΠΎΠΉ |
ΡΡΡΡ |
1.84x | 25 contexts | ΡΡΡΡΡ, ΡΡΡΡΡ, ΠΌΡΡΡΡ |
ΠΊΠΎΠ΄Ρ |
1.92x | 21 contexts | ΠΊΠΎΠ΄ΡΠ°, ΠΊΠΎΠ΄ΡΠΎΠΉ, ΠΊΠΎΠ΄ΡΠΎΠ½ |
Π°Ρ
Π°Ρ |
1.92x | 20 contexts | ΡΠ°Ρ Π°Ρ, ΠΌΠ°Ρ Π°Ρ, ΡΠ°Ρ Π°Ρ |
Π΄ΡΡΡ |
1.94x | 18 contexts | ΡΡΠ΄ΡΡΡΡ, ΡΠ°Π΄ΡΡΡΡ, ΡΠ°Π²Π΄ΡΡΡ |
ΡΠ΄ΠΈΡ |
1.90x | 17 contexts | ΡΡΠ΄ΠΈΡ, ΡΡΠ΄ΠΈΡ, ΡΡΡΠ΄ΠΈΡ |
ΡΠ΅Π½Ρ |
1.89x | 17 contexts | ΡΠ΅Π½ΡΡ, ΡΠ΅Π½ΡΡ, ΡΠ΅Π½ΡΡΠ° |
ΡΠ°ΠΉΠΎ |
2.16x | 10 contexts | ΡΠ°ΠΉΠΎΠ½, ΡΠ°ΠΉΠΎΠ½ΠΈ, ΡΠ°ΠΉΠΎΠ½Π΅ |
Π³ΡΡΡ |
1.50x | 27 contexts | Π³ΡΡΡΡ, Π³ΡΡΡΠ΄, Π°Π³ΡΡΡΠ΄ |
Π°ΠΉΠΎΠ½ |
1.83x | 14 contexts | Ρ Π°ΠΉΠΎΠ½, ΡΠ°ΠΉΠΎΠ½, ΡΠ°ΠΉΠΎΠ½ΠΈ |
ΠΈΡΡΡ |
1.91x | 12 contexts | Π±ΠΈΡΡΡΠ°, ΠΈΡΡΡΠΈΠΉΡ, ΠΌΠΈΠ½ΠΈΡΡΡ |
Π΅Π½ΡΡ |
2.07x | 8 contexts | ΡΠ΅Π½ΡΡ, ΡΠ΅Π½ΡΡΠ°, ΡΠ΅Π½ΡΡΠ΅ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΊ |
-Ρ |
203 words | ΠΊΠΎΠ½ΡΠ΅Π΄Π΅ΡΠ°ΡΠΈΠΉΡ, ΠΊΠΈΠ·ΠΈΠ»ΡΡΡΡ |
-Ρ |
-Ρ |
138 words | ΡΠΊΠΎΠ½Π΄Ρ, ΡΠ»Π΅ΡΡΡΡ |
-Π± |
-Ρ |
126 words | Π±Π°Π½ΡΠΌΠ°ΠΉΡΠ½Ρ, Π±ΠΈΡΡΠΎΡΡ |
-Π° |
-Ρ |
118 words | Π°Π»Π΅ΠΊΡΠ΅ΠΉΡ, Π°Π·Π°ΡΡ |
-ΠΌ |
-Ρ |
112 words | ΠΌΠ°Π»Π°ΠΉΠ·ΠΈΠΉΡ, ΠΌΡΠ³Π°Π½Ρ |
-Π΄ |
-Ρ |
105 words | Π΄ΠΈΠΌΠΈΡΡΠΎΠ²Ρ, Π΄Π·ΠΈΠ΄Π·Π°ΠΉΡ |
-Ρ |
-Ρ |
100 words | ΡΠ»Π°ΡΡ, ΡΡΡΠΊΠΌΠ°Π½ΡΠ°ΠΉΡ |
-Π³ |
-Ρ |
97 words | Π³ΡΠΎΠ΄Π½ΠΎΠΉΡ, Π³Π°Π±ΡΡΠ°ΡΡ |
-ΠΏ |
-Ρ |
69 words | ΠΏΠ΅ΡΡΠΉΡ, ΠΏΠ°ΡΠ°Π΄ΠΎΠΊΡΡ |
-ΠΊ |
-ΡΡ |
64 words | ΠΊΠΈΠ·ΠΈΠ»ΡΡΡΡ, ΠΊΡΠΎΠ½ΠΈΠ°ΡΡ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| ΠΌΡΠ·ΡΠΊΠ°Π½ΡΡ | ΠΌΡΠ·ΡΠΊΠ°-Π½-ΡΡ |
7.5 | Π½ |
| ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ | ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ-Π½-ΠΎΠΉ |
7.5 | Π½ |
| ΡΡΡΡΡΡΡΡΡ | ΡΡΡΡΡΡΡ-Ρ-Ρ |
7.5 | Ρ |
| Π±Π΅ΡΠ΄Π·Π΅ΠΉΠ½Π°Π³ | Π±Π΅ΡΠ΄Π·Π΅ΠΉ-Π½-Π°Π³ |
7.5 | Π½ |
| Π±Π΅Π΄ΠΆΡΠ·Π°ΡΡ | Π±Π΅Π΄ΠΆΡΠ·-Π°-ΡΡ |
7.5 | Π° |
| Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²Π½ΠΎ | Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²-Π½-ΠΎ |
7.5 | Π½ |
| ΡΡΡΡΡΡΠΎΠ½Π°Π΄Ρ | ΡΡΡΡΡΡΠΎΠ½-Π°Π΄-Ρ |
6.0 | ΡΡΡΡΡΡΠΎΠ½ |
| ΡΡΡΡΡΠ°ΡΡΠ» | ΡΡΡΡΡΠ°-ΡΡ-Π» |
6.0 | ΡΡΡΡΡΠ° |
| ΠΊΡΡΡΡΠ°Π΄ΠΎΠ½ | ΠΊΡΡΡΡ-Π°Π΄-ΠΎΠ½ |
6.0 | ΠΊΡΡΡΡ |
| ΠΊΠ°ΡΡΠΈΠ»ΠΈΠ°Π³ | ΠΊΠ°ΡΡΠΈ-Π»ΠΈ-Π°Π³ |
6.0 | ΠΊΠ°ΡΡΠΈ |
| Π°Π»Π΅ΠΊΡΠ°Π½Π΄ΡΠΈΡΠΉΡ | Π°Π»Π΅ΠΊΡΠ°Π½Π΄Ρ-ΠΈΡ-ΠΉΡ |
6.0 | Π°Π»Π΅ΠΊΡΠ°Π½Π΄Ρ |
| Π΄Π·Π°ΡΠΌΠ°ΠΉΡΠ» | Π΄Π·Π°ΡΠΌΠ°-ΠΉΡ-Π» |
6.0 | Π΄Π·Π°ΡΠΌΠ° |
| ΡΡΠ½ΡΡΠ½ΡΡΠ» | ΡΡΠ½ΡΡΠ½-ΡΡ-Π» |
6.0 | ΡΡΠ½ΡΡΠ½ |
| ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ | ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½-Π½Ρ-Π΅ |
6.0 | ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½ |
| ΡΠ°Π»ΡΠ²Π°Π΄ΠΎΡΠ°Π³ | ΡΠ°Π»ΡΠ²Π°Π΄ΠΎΡ-Π°Π³ |
4.5 | ΡΠ°Π»ΡΠ²Π°Π΄ΠΎΡ |
6.6 Linguistic Interpretation
Automated Insight: The language Ossetic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (3.90x) |
| N-gram | 2-gram | Lowest perplexity (406) |
| Markov | Context-4 | Highest predictability (98.2%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-10 17:09:46



















